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Introduction

® |solated from the stems of the Japanese yew, Taxus cuspidata, 1-
hydroxytaxinine is cytotoxic to murine leukemia L1210 cells and human

epidermoid carcinoma KB cells;

® \Whereas 2 has been chemically constructed by 10 research groups, the
total synthesis of 1 was only reported in a dissertation from Kishi's group

in 1998.

Kiyota, H. et al. Chem. Rev. 2011, 111, 7652
Inoue, M. et al. Angew. Chem. Int. Ed. 2019, 58, 12159
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Total Synthesis of 1-Hydroxytaxinine
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Retrosynthetic Analysis of 1-Hydroxytaxinine

Pinacol
coupling

decarbonylative
radical coupling




Synthesis of Key Radical Precursor 5
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Proposed Mechanism
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Synthesis of Key Radical Precursor 5
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Sharpless Dihydroxylation

AD-mix-B: i AD-mix-a:
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Synthesis of Key Radical Precursor 5
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Synthesis of Compound 4
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Proposed Mechanism
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Inoue, M. Tetrahedron 2016, 72, 4859
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Synthesis of Compound 4
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Synthesis of Compound 17
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Completion of Compound 22

catecholborane‘
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Proposed Mechanism
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Baker, J. D. et al. J. Org. Chem. 1976, 41, 574
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Completion of Compound 26
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Completion of 1-Hydroxytaxinine (1)
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Wagner-Meerwein Rearrangement
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From Name Reactions
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Summary

OH OAc

1-Hydroxytaxinine

» 26 Total steps, 0.06% overall yield;
» Et;B/O,-Promoted decarbonylative radical formation;

» Pinacol coupling reaction.

Inoue, M. et al. Angew. Chem. Int. Ed. 2019, 58, 12159
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The First Paragraph

Writing Strategy

Source of 1-Hydroxytaxinine

Importance of 1-Hydroxytaxinine

Importance of taxane diterpenoids
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The First Paragraph

Isolated from the stems of the Japanese yew, Taxus cuspidata, 1-
hydroxytaxinine (1) is cytotoxic to murine leukemia L1210 cells and human
epidermoid carcinoma KB cells. This natural product belongs to a family of
taxane diterpenoids containing more than 400 congeners. Many com-
pounds in this family have biologically important properties, and taxol (2),
one of the most bioactive congeners, is used clinically to treat various

cancers.
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The Last Paragraph

Writing Strategy

The summary of their work

Significant steps in total synthesis

The significance of this work
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The Last Paragraph

In summary, we achieved an asymmetric total synthesis of 1-hydroxy-
taxinine (1) in 26 total steps from 2,2-dimethylcyclohexane-1,3-dione (7).
The two powerful radical reactions annulated the B-ring from the judiciously
designed A- and C-ring substrates and streamlined the overall synthetic
sequence. Because of their flexibility and robustness, the strategy and
tactics developed here should be applicable to the synthesis of highly

oxygenated taxane diterpenoids, including taxol (2).
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Representative Examples

]
Hence, 1 was to be assembled from three commercially available

components, 6, 7, and 8. (Kt, 1&H =/ rIf3M4 5736, 7H8L 3
M e )

Namely, detailed NMR analysis of 4 at room temperature in [D8]THF
revealed that it exists as a 2:1 mixture of conformers, 4a and 4b,
because of the high rotational barrier around the C10-C11 bond. (#tt]if
Ui, FE[D8]JTHFH', XT47E =& T HFAINMR €8, H T C10-C11%
MImiesh#da, B2 1M R4afab e E 1. )

Because of their flexibility and robustness, the strategy and tactics
developed here should be applicable to the synthesis of highly
oxygenated taxane diterpenoids, including taxol (2). (F1-F & A71# & &tk A
FUEME, X HEIT R B SRS 7 RN ZAE H T A R A R A b i SR A
Y, BREETE(2). )
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