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Background

Piperarborenines Exhibit in vitro cytotoxicity
from Piper arborescens against P-388, HT-29, and A549
In 2005 cancer cell lines (IC50 < 4 pg/mL).

Pipercyclobutanamides
from Piper nigrum
In 2001

Selective inhibition of B
cytochrome P450 2D6 (CYP2D6). |

Inhibits p-GalN/tumor necrosis
factor-a-induced death of
hepatocytes and has
hepatoprotective effect

Piperchabamides
from Piper chaba
In 2009




Synthetic Strategies

Baran’ work Tang’ s work

Sequential C-H Functionalization Ring Expansion Method



Baran’s plan

Direct [2+2] photocycloaddition: homodimerization, orientation, E/Z isomerization.
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Baran’s plan- new synthesis
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Baran’s plan- C-H arylation
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Synthesis of Piperarborenines

450-W Hanovia lamp
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1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

Ashworth, I. W. et al J. Org. Process Res. Dev. 2003, 7, 74-81
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Synthesis of Piperarborenines
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Synthesis of Piperarborenines
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Synthesis of Pipercyclobutanamide A

e X

O
0 450-W Hanovia lamp, Pyrexfilter[ © e -‘ { N/
o Pt/C, H HO
» DCM, 15°C, 96 h  Ha 4h NH, (1.2 eq.)
single g
OMe | distereomer OMGJ EDC (1.2 eq.)
(@)

o7 OMe J 0t023°C, 3 h, 54%
6 7 5
B ~ |
/ O XA CQ O NA~N
\ N HN Ph \ N HN /\N/,C ~
(3.0eq.) . _Ph
cat. Pd(OAc), (0.15 eq.) EDC
Ph™ ~X
OMe Aggg\ 50(3.1026hq.)5,0P;Me OMe 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
O ’ ’ o O
17 18

11



Synthesis of Pipercyclobutanamide A
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Synthesis of Pipercyclobutanamide A
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(propose)

13



Retrosynthesis by Tang
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Tang’s method

2 2 2
3R R R RE E _
. R’ 5 mol% [M] N : Chemoselective
E > | | + | Regioselect_i\_le
R4 s X, 70-93% R =5 E R4 =5 R’ Stereospecific

[M] = [Rh], [Cu], or [Agd]

Tang, W. et al Angew. Chem. 2008, 120, 9065-9068
Angew. Chem. Int. Ed. 2008, 47, 8933-8936
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Synthesis of Pipercyclobutanamide A and Piperchabamide G

1) piperidine, AlMe3
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Synthesis of Pipercyclobutanamide A and Piperchabamide G

CO,Et
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Synthesis of Pipercyclobutanamide A and Piperchabamide G

1) DIBAL, PhMe, -78 °C, 30 min

2) KHMDS, Reagent B, THF
N -78100°C, 2 h
Q 50%
o)

1) Pd/C, Hy, MeOH, rt, 15 h

2) DIBAL, PhMe, -78 °C, 30 min
61%

KHMDS, Reagent B, THF
-78°Ct00°C,2h
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potassium bis(trimethylsilyl)Jamide
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Conclusion

Baran (2011):

Baran (2012):

Tang (2012):

Piperarborenine B was synthesized in 7 steps, 7% overall yield;

Piperarborenine D (proposed) was synthesized in 6 steps, 12% overall yield;

The first example of catalytic transition metal mediated C-H activation of cyclobutane ring;
Divergent epimerization and sequential Sp3 arylation strategy were employed,;

Synthesis of desired cyclobutane SM in a stereocontrolled fashion.

Pipercyclobutanamide A (proposed) was synthesizd in 7 steps, 5 % overall yield;

The sequence features mostly skeleton-forming transformations, protecting-group-free, has
only one concession step (DIBAL reduction) leading to an ideality of 85 %;

The first example of C-H olefination on an unactivated cyclobutane ring ;

Stereocontrolled access to highly strained all-cis cyclobutanes;

Direct conversion of aminoquinoline amides directly to aldehydes;

The use of a carboxylate anion as an innate protecting group in an amide reduction.

Pipercyclobutanamide A (proposed) and Piperchabamide G (proposed) was synthesized in
15 steps, 4% overall yield and 16 steps, 3% overall yield;

Ring expansion of a cyclopropylsilver(l) carbene derived from the diazocompound occurred
regioselectively and stereospecifically to afford the cyclobutenoate;

A rhodium(l)-catalyzed conjugate addition of aryl boronic acid to cyclobutenoate;
Stereoselective synthesis of the trans and cis alkenes in the proposed structure of
pipercyclobutanamide A.
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Dimeric, cyclobutane-containing natural products comprise a small yet diverse family
with a variety of biological activities. Although no has been identified, it is
generally presumed that such compounds originate from the direct coupling of the
parent monomeric olefins in Nature. From the vantage point of synthetic strategy,
cyclobutanes derived from such a heterodimerization are quite difficult to prepare
For example, dictazole A and the piperarborenines are
cyclobutane natural products that are only differentiated by remote
substituents. While a direct [2+2] photocycloaddition is an appealing route for coupling
two similar yet distinct olefins, this strategy is problematic for several reasons, including
(head-to-head versus head-to-tail), and
leading to a variety of possible structural and stereochemical outcomes. While crystal
engineering and solid-state photochemistry techniques have provided stereodefined
access to some cyclobutane classes, examples of direct heterodimerization of isolated
olefins to form cyclobutanes are rare and are generally limited in scope. In this
communication,

IS reported as an alternative to [2+2] cycloaddition for the preparation of
pseudosymmetrical cyclobutane structures. It is further shown for the first time that sp3
C-H arylation reactions can be conducted sequentially to access a set of stereocisomeric
natural products in a practical and divergent fashion.



The short routes (7 steps, 7% overall yield; 6 steps, 12% overall) demonstrate the
power of to enable a fundamentally new approach
to cyclobutane natural product synthesis. Notable elements of the synthesis include
the following: (1) a one-step, stereocontrolled preparation of 8 from methyl coumalate;
(2) the first example of catalytic transition metal-mediated C-H activation on a
cyclobutane ring; (3) the first example of sequential sp3 C-H arylation reactions
performed in natural product synthesis; (4) divergent epimerization of 10 to access
both proposed piperarborenine stereoisomers.
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