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ABSTRACT: The asymmetric hydrogenation of heteroarenes has
recently emerged as an effective strategy for the direct access to
enantioenriched, saturated heterocycles. Although several
homogeneous catalyst systems have been extensively developed for
the hydrogenation of heteroarenes with high levels of chemo- and
stereoselectivity, the development of mild conditions that allow for
efficient and stereoselective hydrogenation of a broad range of
substrates remains a challenge. This Perspective highlights recent
advances in homogeneous catalysis of heteroarene hydrogenation as inspiration for the further development of asymmetric
hydrogenation catalysts, and addresses underdeveloped areas and limitations of the current technology.
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1. INTRODUCTION

Heterocycles are important structural motifs found fre-
quently in natural products1 and industrial products such as
pharmaceuticals2 and agrochemicals.3 Nitrogen heterocycles
constitute approximately 59% of recent FDA-approved small-
molecule drugs, with an average of two to three nitrogen atoms
per drug.2a In the context of pharmaceutical development, a
significant positive correlation exists between key structural
elements of drug candidates, such as degree of saturation and
number of stereogenic centers, with observed clinical
success.2c,d Thus, the ability to access stereochemically
complex heterocyclic scaffolds has been of great interest in
recent years. Considering the ubiquity of both aromatic and
saturated heterocycles in pharmaceuticals, the direct access to
enantiopure heterocycles via heteroarene hydrogenation
continues to be an important research area in both academia
and industry.2

While significant progress has been made in the area of
asymmetric heteroarene hydrogenation, these transformations
continue to pose a challenge for catalytic processes, ostensibly
due to the high energetic cost of breaking aromaticity and the
presence of heteroatoms that may poison and deactivate the
catalyst.4 Nevertheless, the asymmetric hydrogenation of
heteroarenes, including quinolines, isoquinolines, quinoxalines,
pyridines, indoles, furans, and benzoxazines has been
extensively explored, and several comprehensive reviews have
been published on this subject (Figure 1).4 The hydrogenation
of many common heteroarenes can be achieved using a variety
of catalyst systems, including homogeneous and heterogeneous
catalysts, such as metal nanoparticles.4d Among these,

homogeneous catalyst systems have found widespread
application for the asymmetric hydrogenation of heteroarenes,
often providing access to different enantioenriched motifs with
a simple adjustment of the chiral ligand.4,5 This Perspective is
focused on highlighting homogeneous catalyst systems that
have recently been developed for the asymmetric hydro-
genation of heteroarenes, evaluating the general relationships
between different catalyst complexes and their reactivity for
various heterocycles. The following sections will feature reports
that have been published since 2011, as previous reports have
already been discussed comprehensively in prior review
articles.4

2. GENERAL MECHANISTIC CONSIDERATIONS

Heteroarenes pose a significant challenge for asymmetric
catalysis due to their inherent thermodynamic stability and the
tendency of both reactants and products to deactivate catalysts.
Three general strategies have been employed to overcome
these difficulties: catalyst activation, substrate activation, and
relay catalysis.4a Catalyst activation involves either the
preformation of the active catalyst or the addition of reagents
to form a more active catalyst species in situ. For instance, the
addition of halide sources to an iridium precatalyst was
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reported by Mashima and co-workers to prevent the
irreversible formation of catalytically inactive dimeric iridium
hydride species 3 (Scheme 1A).6 The substrate activation

approach introduces reagents to overcome the inherent
aromatic stability of heteroarenes through in situ generation
or preformation of activated substrates, such as quinolinium or
pyridinium salts (e.g., 6, Scheme 1B).7 Finally, relay catalysis
involves the use of two or more catalysts for the asymmetric
hydrogenation of heteroarenes. For example, an achiral
transition metal catalyst is often employed to induce initial
partial hydrogenation of the substrate 8, followed by an
enantioselective hydrogenation of an intermediate such as
imine 9 aided by a chiral Brønsted acid catalyst (Scheme 1C).8

Overall, these distinct strategies enable high stereoselectivity
and functional group tolerance in the asymmetric hydro-
genation of heteroarenes.
The general mechanism of the asymmetric hydrogenation of

heteroarenes can be thought to involve the following steps

(depending on the degree of unsaturation): formation of the
active catalyst species, hydride addition from the catalyst to the
substrate, and regeneration of the catalyst from a hydrogen
source.9 However, several questions regarding the mechanism
of asymmetric hydrogenation that could be addressed include
the order of hydride addition (1,2- vs 1,4-addition), substrate
coordination to the catalyst (inner- vs outer-sphere), the rate-
determining step, and the enantio-determining step.4a−d,9c For
instance, both inner-sphere and outer-sphere processes have
been proposed to explain the mechanism for the iridium-
catalyzed hydrogenation of 2-methylquinoline 11 (Scheme
2).9b In an outer-sphere pathway, protonation of the substrate

occurs to form iminium intermediate 12, followed by external
hydride delivery to the activated substrate from the transition
metal center. In contrast, an inner-sphere process involves a
substrate that is bound to the metal hydride species (13) that
undergoes a hydride transfer step. While other catalyst systems
have been proposed to undergo an outer-sphere mechanism
for the hydrogenation of various heterocycles (vide infra),
other studies also support an inner-sphere coordination of the
substrate to the catalyst.10 Thus, the coordinating ability of
different heteroatom-containing substrates to the catalyst
complex is not explicitly defined, and therefore it is difficult
to predict how it would behave under different hydrogenation
systems.
Although the asymmetric hydrogenation of heteroarenes is

often difficult to monitor due to the use of high-pressure
reactors, several mechanistic studies have been conducted

Figure 1. Overview of the total number of published reports on the asymmetric hydrogenation of common heteroarenes (≥90% ee, minimum of
three substrates).4

Scheme 1. Examples for the Asymmetric Hydrogenation of
Heteroarenes

Scheme 2. Possible Mechanistic Pathways for the
Hydrogenation of 2-Methylquinoline 11
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using empirical data and computational modeling to elucidate
the mechanisms of transition metal-catalyzed and organic-
catalyzed heteroarene hydrogenation reactions. The proposed
catalytic cycles of these studies will be addressed in the
following sections of this Perspective for each transition metal
and organic catalyst system.

3. RUTHENIUM-CATALYZED ASYMMETRIC
HYDROGENATION

With regard to homogeneous catalysis, ruthenium was
among the first transition metals explored in asymmetric
hydrogenation reactions. In 1995, Noyori and co-workers
introduced a Ru(II) catalyst with a chiral diamine ligand that
promotes the highly stereoselective reduction of aromatic
ketones through an asymmetric transfer hydrogenation
process.11 Shortly after, this catalyst system was applied to
the asymmetric hydrogenation of imines with a formic acid−
triethylamine mixture as the hydrogen source.12 Since then,
several established ruthenium catalyst systems with common
ligand scaffolds were developed for the asymmetric hydro-
genation of heteroarenes (Figure 2), as well as the hydro-
genation of carbocyclic aromatic compounds.13

The air-stable Ru/TsDPEN catalyst (TsDPEN = N-(p-
toluenesulfonyl)-1,2-diphenylethylenediamine), initially
developed by Fan and Chan for the hydrogenation of
quinolines, has found widespread application in the asym-
metric hydrogenation of N-heterocycles (Figure 2).14−19 In
these reports, hydrogen gas is activated by the catalyst to
reduce quinolines at ambient temperatures in ionic liquids and
even under solvent-free conditions. Subsequent studies also
utilize this system for sequential reductive amination and
asymmetric hydrogenation cascade reactions of quinoline
derivatives to access structurally diverse scaffolds.15 Since
2011, the Ru/TsDPEN catalyst system has evolved with
important applications toward the development of novel chiral
ligands. Fan and co-workers demonstrated that chiral Ru/
TsDPEN catalysts can reduce 2,2′-bisquinoline and bisqui-
noxaline derivatives with high stereoselectivity.16 More
recently, the system was applied to hydrogenate 2-(pyridine-
2-yl)quinoline derivatives for the synthesis of novel N,P-ligands
(Scheme 3).17 Using chiral catalyst complex 16 (Scheme 3A),
selective hydrogenation of the quinoline ring was observed in a
range of substrates (15) with high enantioselectivities.
Although ortho-substituents on the pyridine ring are necessary
to prevent catalyst deactivation, this requirement further

Figure 2. Common Ru-based catalyst systems for the asymmetric
hydrogenation of heteroarenes (≥90% ee, minimum three substrates).
Only one enantiomer of the ligand is shown for simplicity.

Scheme 3. Ru-Catalyzed Asymmetric Hydrogenation of
Quinolines and Applications of Hydrogenated Products
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enables the tuning of the steric effect of the chiral ligand
generated.
The hydrogenated products 17a−17d can then be trans-

formed into a novel class of chiral N,P-ligands by treatment
with PPh2Cl in NEt3. After recrystallization, these ligands are
then treated with [Ir(cod)Cl]2, followed by anion metathesis
to yield chiral iridium complexes 19a−19d.17 These catalysts
are then successfully used for the asymmetric hydrogenation of
olefins and seven-membered cyclic imines (Scheme 3B).
Notably, replacement of the phenyl substituent on the pyridine
ring of 19d with an alkyl group (19a−19c) improves the
enantioselectivity of the hydrogenation of trisubstituted olefin
20 to 21 in 88−92% ee. Catalyst 19b is further utilized in the
asymmetr ic hydrogenat ion of benzazepines and
benzodiazepines, providing product 23 in up to 99% ee and
20:1 dr. The efficient synthesis of a novel class of chiral ligands
through the asymmetric hydrogenation of heteroarenes is a
promising application of this hydrogenation technology. The
Ru/TsDPEN catalyst system is also effective for the
asymmetric hydrogenation of unprotected indoles, which
traditionally require protection of the indole nitrogen to
prevent catalyst deactivation,18 C(3)-substituted benzoxa-
zines,19 and a variety of polycyclic heteroarenes.20

On the basis of experimental results and theoretical
calculations, Fan and co-workers propose a catalytic cycle for
the asymmetric hydrogenation of quinolines with Ru/TsDPEN
catalysts (Figure 3). The Ru(II) catalyst activates molecular H2
to form dihydrogen complex 24. After heterolytic cleavage of
H2 to generate complex 27 and the activated substrate 26,
subsequent 1,4-hydride addition affords an enamine inter-
mediate 29.4e,15a Tautomerization then occurs to form imine
30, which is protonated by complex 24 to produce iminium
31. Intermediate 31 undergoes an asymmetric 1,2-hydride
transfer from complex 27 to deliver product 32 via TS1. The
enantioselectivity is proposed to originate from the attractive
CH/π interaction between the η6-arene ligand and the
carbocyclic ring of the dihydroquinoline via a 10-membered
transition state with participation of the triflate anion, as shown
in TS1.15,21

Although Ru/TsDPEN systems are efficient catalysts for the
hydrogenation of bicyclic aromatic compounds, preformation
of the active catalyst is required. Alternatively, other common
chiral bisphosphine ligands that are explored in ruthenium-
catalyzed asymmetric hydrogenations include PhTRAP (2,2″-
bis[1-(diphenylphosphino)-ethyl]-1,1″-biferrocene), a C2 sym-
metric biferrocene framework.22 Kuwano and co-workers
demonstrate that ruthenium catalysts bearing PhTRAP ligand
(L1) are productive in the hydrogenation of N-Boc-protected
indoles (Scheme 4A), as well as substituted N-Boc-protected
pyrroles and imidazoles (Scheme 4B,C).23 Considering the
high aromatic stability of single-ring aromatic compounds, the
exhaustive hydrogenation of trisubstituted pyrroles to yield
chiral pyrrolidines under this catalyst manifold is a significant
advancement.4a,23c The Ru/PhTRAP catalyst can also be
applied to the hydrogenation of other five-membered hetero-
cycles such as disubstituted imidazoles and oxazoles; however,
only partial hydrogenation is observed in these cases.23d

Finally, ruthenium N-heterocyclic carbene (NHC) com-
plexes have found many applications in the transfer hydro-
genation of ketones, nitriles, as well as the regioselective
hydrogenation of heterocycles.24Glorius and co-workers first
demonstrated the regioselective hydrogenation of the aromatic
carbocyclic ring of quinoxalines, albeit with moderate

enantioselectivity. They observed that the identity of NHC
ligand was critical in determining the regioselectivity of
hydrogenation, and found that these catalytic systems can
also be applied toward the asymmetric hydrogenation of furans
and benzofurans.25 Using chiral NHC ligand SINpEt·HBF4
(L2), the asymmetric hydrogenation of disubstituted furans
and 2-substituted benzofurans proceeded in high yields and
enantioselectivities (Scheme 5). A wide range of substituted
furans were hydrogenated with this catalyst system,
demonstrating a significant correlation between strongly
electron-withdrawing groups on the substrate and diminished
enantioselectivity.25a Overall, the Ru/NHC complex demon-
strated its capability to hydrogenate a range of heteroarenes,
particularly oxygen-containing heterocycles, allowing direct
access to natural metabolites such as (+)-corsifuran A (Scheme
5A). Further studies of the Ru/L2 catalyst system by Glorius
and co-workers revealed that hydrogenation of the naphthyl
substituents of the NHC ligand was a key step in accessing the
active catalyst.26

Figure 3. Proposed catalytic cycle for the asymmetric hydrogenation
of quinolines with a Ru/TsDPEN catalyst.4e,15a
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4. IRIDIUM-CATALYZED ASYMMETRIC
HYDROGENATION

Following the initial disclosure of the enantioselective
hydrogenation of quinolines using [Ir(cod)Cl]2 and
bisphosphine ligand MeO-BIPHEP (L3) in 2003 (Scheme
6),27 much attention has been devoted toward the develop-

ment of the iridium-catalyzed hydrogenation of heteroarenes.
Most studies have focused on the exploration of different types
of activating agents to reduce substrate aromaticity, as well as
to prevent the irreversible formation of catalytically inactive
dimeric iridium hydride species 3.6,27 Common ligand scaffolds
utilized in this transformation include atropisomeric biaryl
bisphosphine ligands, as well as phosphine−phosphite ligands,
N,P-ligands, and chiral diamine ligands that have been explored
for the asymmetric hydrogenation of a range of heterocycles
(Figure 4).
The biaryl bisphosphine ligand scaffold is most common in

iridium-catalyzed asymmetric hydrogenation due to its
excellent steric and electronic tunability. Structural variations
of the ligand include alteration of P-substitution and
modifications of the phenyl backbone, including the synthesis
of supramolecular chiral ligands appended with crown ethers
that induce strong complexation between the ligand and alkali
cations.28 Since 2011, the combination of iridium and biaryl
bisphosphine ligands has been extensively studied by Zhou,
Agbossou-Niedercorn, and Mashima in the asymmetric
hydrogenation of heteroarenes, including quinolines,29 iso-
quinolines,6,30 quinoxalines,29e,31 pyridines,30e pyrazines,32 and
benzoxazines.33 Iodine, chloroformates, amines, and Brønsted
acids are common activating reagents for enhancing catalytic
activity of these heterocyclic substrates.
The mechanism and the role of iodine as an activator was

initially proposed by Zhou and Li (Figure 5).27b Starting from
[Ir(cod)Cl]2, the addition of I2 oxidizes the Ir(I) precursor to
an Ir(III) species 51. Subsequent heterolytic cleavage of H2
with the release of HI forms catalytically active Ir(III) complex
53. The heteroarene then coordinates to generate octahedral
complex 54, followed by a 1,4-hydride transfer to form
intermediate 55. An additional molecule of H2 regenerates the
iridium hydride species 53 and protonates the enamine, which
can isomerize to imine 30 and undergo a second reduction.
The enantio-determining step is proposed to be a 1,2-hydride
addition that establishes the stereogenic center, with the
addition of H2 releasing the product and regenerating Ir(III)
species 53. It is unclear, however, whether substrate
coordination to the metal center occurs, as other studies
have proposed an outer-sphere pathway for the homogeneous
iridium-catalyzed hydrogenation of quinolines and
isoquinolines (vide supra).6,9b

R e c e n t l y , Z h o u a n d c o -wo r k e r s emp l o y e d
trichloroisocyanuric acid (TCCA) as a traceless activating

Scheme 4. Ru-Catalyzed Asymmetric Hydrogenation of
Heteroarenes with PhTRAP Ligand L1

Scheme 5. Ru-Catalyzed Asymmetric Hydrogenation of
Furans and Benzofurans with NHC Ligand L2

Scheme 6. First Reported Ir-Catalyzed Asymmetric
Hydrogenation of Quinolines
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reagent for the iridium-catalyzed hydrogenation of isoquino-
lines and pyridines (Scheme 7). This method circumvents the

Figure 4. Common Ir-based catalyst systems for the asymmetric
hydrogenation of heteroarenes (≥90% ee, minimum three substrates).
Only one enantiomer of the ligand is shown for simplicity.

Figure 5. Proposed catalytic cycle for the Ir-catalyzed asymmetric
hydrogenation of quinolines with I2 as an additive.27b

Scheme 7. Ir-Catalyzed Asymmetric Hydrogenation of
Isoquinolines and Pyridines Using TCCA as the Activator
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additional steps of installing and removing the N-acyl group to
activate the substrates. Pairing [Ir(cod)Cl]2 and bisphosphine
ligand (R)-SEGPHOS (L4), a range of disubstituted isoquino-
lines and pyridines were hydrogenated in high yield and
excellent enantioselectivity.30e The use of TCCA as a halogen-
bond activator gave the highest enantioselectivity compared to
N-chlorosuccinimide or N-iodosuccinimide. Notably, 2,3,6-
trisubstituted pyridines 60 were also converted to chiral
piperidines 61 with higher enantioselectivity than previous
methods, which often require more activated pyridinium salts
as substrates.7

Extending BINAP-derived ligand scaffolds, biaryl spirocyclic
ligands have emerged as powerful tools for asymmetric
catalysis due to their higher rigidity.34 Nagorny and co-
workers reported that the chiral spiroketal-based
bisphosphinite ligand (SPIRAPO; L5) is effective in the
asymmetric hydrogenation of quinolines, quinoxalines, and
benzoxazinones (Scheme 8).35 Using 10 mol % I2 and low
catalyst loadings, the synthesis of a range of enantioenriched
saturated heterocycles was achieved at 24 atm of H2 and room
temperature.

While there has been extensive development of biaryl
bisphosphine (vide supra) and phosphoramidite36 ligands for
iridium-catalyzed hydrogenation, ferrocenyl-based Josiphos
ligands are also efficacious ligand scaffolds for N-heterocycles,
imparting excellent enantioselectivity and diastereoselectivity
.37 Inspired by the iridium catalyst system employed in the
ether-directed asymmetric imine reduction en route to the
herbicide metolachlor,10 Stoltz and co-workers explored the
potential of directing groups as iridium catalyst chelating
agents for the directed hydrogenation to a specific face of the
substrate. Toward the total synthesis of the complex bis-
tetrahydroisoquinoline alkaloid jorumycin, the hydroxymethyl
functionality was utilized as a directing group for the iridium-
catalyzed asymmetric hydrogenation of bis-isoquinoline 64 to
generate pentacyclic intermediate 65 in one step as a single
diastereomer in 88% ee (Scheme 9).37

Utilizing directing groups is an underdeveloped activation
strategy for the asymmetric hydrogenation of N-heterocycles,
as Lewis basic functional groups are not as well tolerated with
previous hydrogenation methods.30 However, Stoltz and co-
workers have extended this application of using a
hydroxymethyl directing group toward the asymmetric hydro-
genation of a range of 1,3-disubstituted isoquinolines. Using
1.25 mol % of [Ir(cod)Cl]2 and 3 mol % of chiral Josiphos
ligand (L7), a range of differentially substituted isoquinolines
were hydrogenated in high yields and enantio- and
diastereoselectivity (Scheme 10).37b Heterocyclic substituents,

such as furan and thiophene, at the C(3) position were also
tolerated in this transformation. Interestingly, altering the
directing groups at the C(1) position of the isoquinoline
lowered the levels of conversions but maintained similar levels
of stereoselectivity.
Phosphine−phosphite (P−OP) ligands, an emerging class of

chiral bisphosphine ligands, have been developed by Vidal-
Ferran and co-workers for the iridium-catalyzed asymmetric
hydrogenation of heterocycles.38 This catalyst system is
particularly reactive in the enantioselective synthesis of
indolines from unprotected indoles,38b as well as the
asymmetr ic hydrogenat ion of benzoxaz ines and
benzothiazinones.38c Although stoichiometric amounts of
sulfonic acids are needed to promote isomerization to the
iminium intermediate, the transformation can be carried out
using only 0.5 mol % of [Ir(cod)Cl]2 (Scheme 11).38

Although chiral bisphosphine ligands are most commonly
employed for iridium-catalyzed asymmetric hydrogenation,
chiral PHOX ligands with nitrogen and phosphorus chelating
groups (N,P) have also been used to reduce a range of
heteroarenes.39 Most recently, Ding and co-workers reported
the use of a SpinPHOX (spiro[4,4]-1,6-nonadiene-based
phosphinooxazoline) ligand (L9) for the enantioselective

Scheme 8. Ir-Catalyzed Asymmetric Hydrogenation of
Quinolines, Quinoxalines, and Benzoxazinones

Scheme 9. Key Ir-Catalyzed Enantioselective
Hydrogenation Step in the Total Synthesis of Jorumycin

Scheme 10. Ir-Catalyzed Asymmetric Hydrogenation of 1,3-
Disubstituted Isoquinolines
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hydrogenation of indole and benzofuran derivatives (Scheme
12). This iridium catalyst system is effective for the asymmetric

hydrogenation of a diverse range of indoles with high
functional group tolerance, using 1 mol % of catalyst loading
and mild reaction conditions.39a Although preformation of the
Ir/SpinPHOX catalyst complex is necessary, up to 99%
isolated yield and 99% enantiomeric excess are observed
across differentially substituted indole and benzofuran
substrates.
Unlike the ruthenium catalyst system, only a few reports

employ the TsDPEN ligand for iridium-catalyzed asymmetric
heteroarene hydrogenation.16c,40 In 2019, Fan and co-workers
developed Ir/TsDPEN catalyst complex 78 for the
enantioselective synthesis of vicinal chiral diamines. These
products are synthesized through a relay sequence of
intermolecular reductive amination followed by asymmetric
hydrogenation of a range of 2-quinoline aldehydes and
aromatic amines (Scheme 13).16c For more sterically
encumbered substrates, an addition of 10 mol % TfOH is
required to generate chiral diamines in high levels of selectivity.

5. RHODIUM-CATALYZED ASYMMETRIC
HYDROGENATION

Apart from iridium and ruthenium catalyst systems in the
asymmetric hydrogenation of heteroarenes, rhodium catalysts
have also been effective for the reduction of quinolines,
isoquinolines, and indoles (Figure 6). The combination of a

rhodium(I) source and either a PhTRAP41 or TsDPEN42

ligand have been explored for the enantioselective hydro-
genation of indoles and quinolines, respectively. More recently,
Zhang and co-workers have developed a novel ferrocene-based
bisphosphine-thiourea ligand, ZhaoPhos (L10), for the
cooperative catalysis of a transition metal center for hydro-
genation and anion binding of the thiourea derivative.43 This
strategy allows a broader range of Brønsted acids to be

Scheme 11. Ir-Catalyzed Asymmetric Hydrogenation of
Indoles, Benzoxazines, and Benzothiazinones with P−OP
Ligand L8

Scheme 12. Ir-Catalyzed Asymmetric Hydrogenation of
Indoles and Benzofurans with SpinPHOX Ligand L9

Scheme 13. Asymmetric Hydrogenation of Quinolines with
Iridium Catalyst 78

Figure 6. Common Rh-based catalyst systems for the asymmetric
hydrogenation of heteroarenes (≥90% ee, minimum three substrates).
Only one enantiomer of the ligand is shown for simplicity.
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tolerated through hydrogen bonding interactions with the
thiourea moiety, and simple tunability with the phosphine
substituents to improve selectivity. Using ligand L10 with 0.5
mol % rhodium catalyst loading, differentially substituted
quinolines, isoquinolines, and unprotected indoles are hydro-
genated with excellent yield and enantioselectivity (Scheme
14). The addition of HCl as a strong acid is well tolerated
under this catalyst system due to the stabilizing interaction
with the thiourea derivative.

Zhang and co-workers performed DFT calculations to gain
insight into the mechanism of the Rh-catalyzed transformation
(Figure 7).43c Rh(I) catalyst 86 undergoes oxidative addition
with H2 to generate the active Rh(III) species 88. Protonation
of the indole substrate with HCl allows anion binding with the
thiourea moiety to form intermediate 90, allowing hydrogen
bonding interactions between the chloride ion and the indole
N−H group. Hydride transfer then proceeds through an outer-
sphere pathway to release the chiral indoline product 91 and
complex 92. The addition of another molecule of H2 facilitates
heterolytic cleavage of dihydrogen in complex 93 to generate
Rh(III) catalyst 94 and HCl, in what was computed to be the
rate-determining step. Overall, the thiourea−chloride anion
binding proved to be crucial for inducing high
enantioselectivity and reactivity in this system.43c

6. PALLADIUM-CATALYZED ASYMMETRIC
HYDROGENATION

Compared to ruthenium, iridium, and rhodium catalysts,
homogeneous palladium catalysts for the asymmetric hydro-
genation of heteroarenes remain relatively unexplored.4 In
2010, Zhou and co-workers reported the first Pd-catalyzed
asymmetric hydrogenation of N−H indoles using Pd-
(OCOCF3)2, a chiral H8−BINAP ligand, and (−)-camphor-

sulfonic acid.44 Since their seminal report, the homogeneous
palladium catalyst system has been extended to accommodate
a range of N-heteroarenes, including quinolines,45 indoles,46

quinoxalinones,47 and the partial hydrogenation of pyrroles
(Figure 8).48 Common among all these catalytic systems is the
use of chiral biaryl bisphosphine ligands with different steric
environments of the naphthyl ring.

Scheme 14. Rh-Catalyzed Asymmetric Hydrogenation of N-
Heteroarenes with ZhaoPhos Ligand L10

Figure 7. Proposed catalytic cycle for the Rh-catalyzed asymmetric
hydrogenation of indoles with ZhaoPhos L10.43c

Figure 8. Common Pd-based catalyst systems for the asymmetric
hydrogenation of heteroarenes (≥90% ee, minimum three substrates).
Only one enantiomer of the ligand is shown for simplicity.
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Zhou and co-workers have extensively developed palladium
catalyst systems for the hydrogenation of N-heteroarenes, as
palladium complexes demonstrate a higher tolerance for strong
Brønsted acids. When chiral ligand (R)-H8−BINAP (L11),
palladium(II) trifluoroacetate, and 1 equiv of (−)-camphor-
sulfonic acid or TsOH·H2O are used, the asymmetric
hydrogenation of 2-substituted and 2,3-disubstituted indoles
is achieved to synthesize enantioenriched indolines in up to
99% yield and 98% ee (Scheme 15).46c Isotope-labeling studies
demonstrate that the acid is necessary for formation of the
iminium salt, which then undergoes hydrogenation by a Pd−H
species.

Using both experimental and theoretical methods, Zhou and
co-workers analyzed several possible mechanisms and propose
a stepwise outer-sphere pathway (Figure 9).46c The indole is

initially protonated by TsOH to give the iminium 97,
subsequently inducing hydrogen-bonding interactions with
the trifluoroacetate ligand to generate intermediate 99. A
hydride transfer from the Pd(II) center to the hydrogen-bound
iminium group of complex 100 is proposed to be the enantio-
determining step. The addition is postulated to occur through
an eight-membered transition state, in which differentiation of
the enantiotopic face is achieved through steric interactions
with the chiral bisphosphine ligand. After dissociation of the

chiral indoline product 102, palladium hydride species 98 is
regenerated with the release of TsOH from the activation of
H2. Additional mechanistic studies of palladium-catalyzed
asymmetric hydrogenation of N-heteroarenes may provide
key insights for further chiral catalyst design to improve the
substrate scope of this transformation.

7. IRON-CATALYZED ASYMMETRIC
HYDROGENATION

Despite the development of many efficient transition metal
catalysts for the asymmetric hydrogenation of heteroarenes,
the application of earth-abundant metals such as iron as
hydrogenation catalysts is a promising avenue of further
development. The first report of the homogeneous asymmetric
hydrogenation of imines using first-row transition metals was
only recently published in 2011.49 Beller and co-workers
developed a novel cooperative catalytic system combining an
achiral iron hydrogenation catalyst with a chiral Brønsted acid
that facilitates the enantioselective reduction of quinoxalines
and benzoxazines.50 Using chiral phosphoric acid 105 to
activate the substrate and control the enantioselectivity, an iron
complex (104) reacts with the activated intermediate to deliver
e n a n t i o e n r i c h e d t e t r a h y d r o q u i n o x a l i n e s a n d
dihydrobenzoxazines in high yields and selectivity (Scheme
16).50a Notably, both electron-donating and electron-with-

drawing substituents on the C2-substituted phenyl ring, as well
as meta- and para-substituted substrates, had little impact on
the reactivity and enantioselectivity of the hydrogenation
reaction. The levels of selectivity observed with the iron
catalyst system rival those of late transition metal-based
catalysts for the hydrogenation of the same heteroarenes.
Although the mechanism for this transformation has been

previously investigated computationally using acyclic imines,51

Hopmann has proposed an alternative mechanism with
benzoxazine as the substrate (Figure 10).52 Calculations
indicate that hydrogenation may likely occur through a
stepwise mechanism, in which initially the resting state 107
involves an adduct between the deprotonated acid and the iron
complex. A molecule of H2 generates dihydrogen complex 108,
subsequently splitting H2 through proton abstraction by the
phosphate to yield iron hydride species 109. Benzoxazine 110
then coordinates to the chiral acid through hydrogen-bonding
interactions, allowing hydride transfer to occur to form catalyst
species 112. Finally, product 113 is released with regeneration

Scheme 15. Pd-Catalyzed Asymmetric Hydrogenation of
N−H Indoles

Figure 9. Proposed catalytic cycle for the Pd-catalyzed asymmetric
hydrogenation of indoles.46c

Scheme 16. Fe-Catalyzed Asymmetric Hydrogenation of
Quinoxalines and Benzoxazines with Chiral Phosphoric
Acid 105
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of the catalyst complex 107.52 Computationally predicted
enantioselectivities are in excellent agreement with
experimental values, and the proposed mechanism is consistent
with experimental observations by Beller and co-workers on
possible reaction intermediates.50

8. BORANE-CATALYZED ASYMMETRIC
HYDROGENATION

Avoiding the use of transition metals for catalysis, the metal-
free asymmetric hydrogenation of heteroarenes is an emerging
research field for further development. Recently, frustrated
Lewis pair (FLP) catalysis has been explored for the
hydrogenation of heteroarenes with hydrogen gas or NH3·
BH3 as the hydrogen source.53 Du and co-workers reported a
novel FLP catalyst system using a chiral borane catalyst (115),
generated in situ from the direct hydroboration of chiral dienes
114 with HB(C6F5)2 (Scheme 17).54 The binaphthyl

substituent presumably serves to control the stereoselectivity
of the transformation, often requiring bulky aryl groups to
achieve high selectivity. Although the mechanism for the
asymmetric hydrogenation of heteroarenes using chiral borane
catalysts has not been investigated thoroughly, FLP catalysts
are well-known to activate H2 splitting and undergo hydride
transfer.55

Chiral borane catalysts such as 115 are effective for the
asymmetric hydrogenation of trisubstituted quinolines and
disubstituted quinoxalines.53 Du and others optimized the

catalyst system to generate the borane catalyst in situ with 2 to
5 mol % of the chiral diene ligand 117 and HB(C6F5)2 in the
presence of molecular H2 gas (Scheme 18). Under mild

reaction conditions, a range of chiral tetrahydroquinolines and
tetrahydroquinoxalines were synthesized in high yield and
enantioselectivity.53a−d Overall, this catalyst system is a
promising step toward the in situ generation of a library of
chiral borane catalysts, and their application to the asymmetric
hydrogenation of other heteroarenes could be explored.
In 2019, Wang and co-workers developed a similar catalytic

system, employing chiral spiro-bicyclic bisborane catalysts for
the asymmetric hydrogenation of C(2)-substituted quinolines
.53e The novel spiro-bicyclic bisborane catalyst 122 exhibited
excellent activity and selectivity for alkyl-substituted quinolines
at the C(2) position, which previously have not been well
tolerated (Scheme 19). A range of quinolines bearing alkenes,

alkynes, and heterocycles were hydrogenated in excellent yield,

enantioselectivity, and chemoselectivity, demonstrating the

catalyst’s broad functional group tolerance.

Figure 10. Proposed cooperative catalytic cycle for the Fe-catalyzed
asymmetric hydrogenation of benzoxazines in the presence of a chiral
phosphoric acid.52

Scheme 17. In Situ Formation of Chiral Borane Catalyst 115
from Chiral Dienes

Scheme 18. Metal-Free Hydrogenation of Heteroarenes
through in Situ Formation of a Chiral Borane Catalyst

Scheme 19. Metal-Free Hydrogenation of Quinolines Using
Spiro-Bicyclic Bisborane Catalyst 122
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9. CHIRAL PHOSPHORIC ACID-CATALYZED
ASYMMETRIC HYDROGENATION

Since Rueping’s first report of an organic-catalyzed
asymmetric reduction of heteroarenes in 2006, various chiral
Brønsted acid catalysts have emerged as powerful agents for
asymmetric arene hydrogenation (Scheme 20).4,56 Asymmetric

transfer hydrogenation (ATH) reactions are promising
alternatives to the use of transition metals or high pressure
reactors, instead employing hydrogen sources like Hantzsch
esters (HEH), dihydrophenanthridine (DHPD), and 4,5-
dihydropyrrolo[1,2-a]quinoxalines.57 In most cases, however,
an unrecyclable excess of reductant is required for hydro-
genation.
Over the past decade, several effective organic catalyst

systems have been developed with chiral phosphoric acids
(CPA) for the asymmetric reduction of quinolines,58

indoles,58b,59 quinoxalines,58c benzoxazines,57,58b,c,f,60 benzo-
thiazines,60 and the partial hydrogenation of pyridines (Figure
11).61Rueping and others have reported the use of BINOL-
based phosphoric acid catalysts for the asymmetric hydro-
genation of heteroarenes, with similar catalyst systems as
shown in Scheme 20.56 More recently, Shi and co-workers
have developed a new class of CPA catalysts with a 1,1′-
spirobiindane-7,7′-diol (SPINOL) backbone for the enantio-
selective hydrogenation of a range of quinolines and
benzoxazines.58f Using 1 mol % of CPA 135 and 1.25 to 2.5
equiv of HEH (126), electron-withdrawing and electron-
donating substituents at the C(2)-position are all well tolerated
and afforded excellent enantioselectivities (Scheme 21).58f The
metal-free and mild reaction conditions of this transformation
are an appealing alternative to transition metal catalyst systems.
The general mechanism of the asymmetric transfer hydro-

genation of quinolines by Hantzsch esters has been explored
computationally by Frison and co-workers.62 It is well-
precedented that two subsequent reduction cycles occur,
each with one equivalent of the hydride source and a chiral
phosphoric acid. Quinoline 25 is first activated through a
proton transfer from the phosphoric acid to the substrate,
followed by a 1,4-hydride addition using HEH. The resulting
dihydroquinoline can then isomerize to the imine, entering a
second reduction cycle involving a similar stepwise process
(Figure 12). Although previous studies have proposed the
hydride transfer from 146 to 147 to be the rate- and enantio-
determining step,63 Frison revisited these calculations and
proposed that the stereocontrol is determined from the steric

constraints by the aryl substituent of the CPA with HEH
instead. Thus, the enantio-determining step would not be the
hydride transfer but rather the coordination of HEH to
complex 145 to generate intermediate 146, hindering access of
the HEH to the catalytic site and controlling the facial
approach of the hydride addition.62

Using relay catalysis, Zhou and co-workers took inspiration
from NAD(P)H models that enable the biomimetic
asymmetric hydrogenation of heteroarenes, harnessing the in
situ generation of dihydrophenanthridine (DHPD) from
catalytic amounts of ruthenium, phenanthridine, and H2 as
the terminal reductant.58c,64 Using 0.5 mol % of [Ru(p-
cymene)I2]2, 10 mol % of DHPD, and 1 mol % of CPA 130 or

Scheme 20. First Reported Chiral Phosphoric Acid-
Catalyzed Asymmetric Hydrogenation of Quinolines

Figure 11. Common chiral phosphoric acid catalyst systems for the
asymmetric hydrogenation of heteroarenes (≥90% ee, minimum three
substrates). Only one enantiomer of the catalyst is shown for
simplicity.

Scheme 21. Asymmetric Transfer Hydrogenation of
Quinolines with SPINOL-Derived Phosphoric Acid 135
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131, the asymmetric hydrogenation of 2-substituted quino-
lines, quinoxalines, and benzoxazines proceeded in up to 99%
yield and 97% ee (Scheme 22A).
The mechanism of the biomimetic asymmetric hydro-

genation reaction is proposed to involve two catalytic cycles,
initially with Ru-catalyzed hydrogenation of phenanthridine
149 to generate DHPD 153. DHPD then coordinates to the
chiral phosphoric acid to enantioselectively reduce the
substrate 154, which is then regenerated to DHPD by the
ruthenium hydride species (Scheme 22B). Interestingly, using
a Hantzsch ester as the hydride source reverses the
stereoselectivity due to the different steric demands of the
coordination of the substrate and CPA, favoring the Re-face
reduction instead.58c Although a transition metal is employed
to recycle the hydride source, the biomimetic cascade
hydrogenation can be performed under mild conditions with
excellent activities and enantioselectivities.

10. CONCLUDING REMARKS

Over the past decade, many effective catalyst systems have
been developed for the asymmetric hydrogenation or
asymmetric transfer hydrogenation of heteroarenes. Although
transition metal catalysts are most commonly employed for
stereoselective hydrogenation with molecular hydrogen gas, a
number of organic catalysts and dual catalytic systems have
also been successfully applied for the synthesis of enantioen-
riched saturated heterocycles.
Despite the recent advances made in the field of asymmetric

hydrogenation, as well as reports that have been discussed in
prior reviews,4 significant challenges in this field remain. The
discovery of a catalyst system with a broad substrate scope of
more than four different heteroarenes has still not been
achieved. Moreover, many asymmetric hydrogenation systems
rely on acid activation of the substrates, which can be a
limitation for more basic products. Development of novel
ligand scaffolds and homogeneous catalyst systems will
continue to be explored to design hydrogenation catalysts
with improved selectivities. Creative activation strategies for
these transformations should also be considered to extend the
substrate scope, whether it be through pendant directing
groups or recyclable activating reagents. Exploring these
strategies will also provide insight into the challenge of
developing a technology for the exhaustive asymmetric
hydrogenation of simple five- or six-membered heteroarenes
and benzene derivatives. Finally, a thorough mechanistic
understanding of these asymmetric transformations is

Figure 12. Proposed general catalytic cycle for the asymmetric
transfer hydrogenation of quinolines in the presence of a chiral
phosphoric acid and Hantzsch ester.62

Scheme 22. Biomimetic Asymmetric Transfer
Hydrogenation of Heteroarenes
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necessary to advance this field. Although experimental
mechanistic studies are often limited by high pressure reactors
and catalyst deactivation pathways, further investigation is
needed to guide the development of the next generation of
hydrogenation catalyst systems.
The asymmetric hydrogenation of heteroarenes using

homogeneous catalysts continues to be a valuable technology
for the direct synthesis of enantioenriched, saturated hetero-
cycles. These small molecules are critical structural motifs in
natural products,1 as well as pharmaceuticals,2 and other
molecules of industrial importance.3 Thus, the development of
efficient catalyst systems for the enantioselective hydro-
genation of a broad range of heteroarenes in good yields,
stereoselectivity, and chemoselectivity remains highly desirable.
We anticipate further advances in asymmetric hydrogenation
technology that will revolutionize this field of research.
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(b) Simoń, L.; Goodman, J. M. Theoretical Study of the Mechanism
of Hantzsch Ester Hydrogenation of Imines Catalyzed by Chiral
BINOL-Phosphoric Acids. J. Am. Chem. Soc. 2008, 130, 8741−8747.
(64) (a) Wang, J.; Zhu, Z.-H.; Chen, M.-W.; Chen, Q.-A.; Zhou, Y.-
G. Catalytic Biomimetic Asymmetric Reduction of Alkenes and
Imines Enabled by Chiral and Regenerable NAD(P)H Models.
Angew. Chem., Int. Ed. 2019, 58, 1813−1817. (b) Wang, J.; Zhao, Z.-
B.; Zhao, Y.; Luo, G.; Zhu, Z.-H.; Luo, Y.; Zhou, Y.-G. Chiral and
Regenerable NAD(P)H Models Enabled Biomimetic Asymmetric
Reduction: Design, Synthesis, Scope, and Mechanistic Studies. J. Org.

ACS Catalysis pubs.acs.org/acscatalysis Perspective

https://dx.doi.org/10.1021/acscatal.0c03958
ACS Catal. 2020, 10, 13834−13851

13850

https://dx.doi.org/10.1021/acs.orglett.8b00312
https://dx.doi.org/10.1021/acs.orglett.8b00312
https://dx.doi.org/10.1021/acs.orglett.8b00312
https://dx.doi.org/10.1021/ja103668q
https://dx.doi.org/10.1021/ja103668q
https://dx.doi.org/10.1039/C4CC04386C
https://dx.doi.org/10.1039/C4CC04386C
https://dx.doi.org/10.1039/C4CC04386C
https://dx.doi.org/10.1039/C1OB06777J
https://dx.doi.org/10.1039/C1OB06777J
https://dx.doi.org/10.1016/j.tet.2013.06.016
https://dx.doi.org/10.1016/j.tet.2013.06.016
https://dx.doi.org/10.1016/j.tet.2013.06.016
https://dx.doi.org/10.1021/ja502020b
https://dx.doi.org/10.1021/ja502020b
https://dx.doi.org/10.1039/C8QO00710A
https://dx.doi.org/10.1039/C8QO00710A
https://dx.doi.org/10.1002/ajoc.201900289
https://dx.doi.org/10.1002/ajoc.201900289
https://dx.doi.org/10.1002/ajoc.201900289
https://dx.doi.org/10.1039/C8QO01361F
https://dx.doi.org/10.1039/C8QO01361F
https://dx.doi.org/10.1021/ja203190t
https://dx.doi.org/10.1021/ja203190t
https://dx.doi.org/10.1002/anie.201100878
https://dx.doi.org/10.1002/anie.201100878
https://dx.doi.org/10.1002/anie.201100878
https://dx.doi.org/10.1002/chem.201204236
https://dx.doi.org/10.1002/chem.201204236
https://dx.doi.org/10.1021/jacs.5b00085
https://dx.doi.org/10.1021/jacs.5b00085
https://dx.doi.org/10.1002/cctc.201000428
https://dx.doi.org/10.1002/cctc.201000428
https://dx.doi.org/10.1002/cctc.201000428
https://dx.doi.org/10.1002/chem.201302432
https://dx.doi.org/10.1002/chem.201302432
https://dx.doi.org/10.1002/chem.201302432
https://dx.doi.org/10.1002/chem.201500602
https://dx.doi.org/10.1002/chem.201500602
https://dx.doi.org/10.1021/acs.orglett.5b03307
https://dx.doi.org/10.1021/acs.orglett.5b03307
https://dx.doi.org/10.1021/acs.orglett.5b01240
https://dx.doi.org/10.1021/acs.orglett.5b01240
https://dx.doi.org/10.1021/acs.orglett.7b00935
https://dx.doi.org/10.1021/acs.orglett.7b00935
https://dx.doi.org/10.1021/acs.orglett.7b00935
https://dx.doi.org/10.1002/anie.201409471
https://dx.doi.org/10.1002/anie.201409471
https://dx.doi.org/10.1002/anie.201409471
https://dx.doi.org/10.1002/anie.201900907
https://dx.doi.org/10.1002/anie.201900907
https://dx.doi.org/10.1021/ja4025808
https://dx.doi.org/10.1021/ja4025808
https://dx.doi.org/10.1016/j.tetlet.2014.10.138
https://dx.doi.org/10.1016/j.tetlet.2014.10.138
https://dx.doi.org/10.1002/anie.201914568
https://dx.doi.org/10.1002/anie.201914568
https://dx.doi.org/10.1002/anie.200600191
https://dx.doi.org/10.1002/anie.200600191
https://dx.doi.org/10.1002/anie.200600191
https://dx.doi.org/10.1002/anie.200600191
https://dx.doi.org/10.1021/ol500176v
https://dx.doi.org/10.1021/ol500176v
https://dx.doi.org/10.1021/ol500176v
https://dx.doi.org/10.1039/c1ob05870c
https://dx.doi.org/10.1039/c1ob05870c
https://dx.doi.org/10.3762/bjoc.8.32
https://dx.doi.org/10.3762/bjoc.8.32
https://dx.doi.org/10.1021/ja211684v
https://dx.doi.org/10.1021/ja211684v
https://dx.doi.org/10.1021/ja211684v
https://dx.doi.org/10.1002/anie.201204179
https://dx.doi.org/10.1002/anie.201204179
https://dx.doi.org/10.1002/anie.201204179
https://dx.doi.org/10.1016/j.tetasy.2015.09.005
https://dx.doi.org/10.1016/j.tetasy.2015.09.005
https://dx.doi.org/10.1002/ejoc.201500330
https://dx.doi.org/10.1002/ejoc.201500330
https://dx.doi.org/10.1002/ejoc.201500330
https://dx.doi.org/10.1021/jacs.6b06009
https://dx.doi.org/10.1021/jacs.6b06009
https://dx.doi.org/10.1021/jacs.6b06009
https://dx.doi.org/10.1021/ol1019234
https://dx.doi.org/10.1021/ol1019234
https://dx.doi.org/10.1002/anie.200601832
https://dx.doi.org/10.1002/anie.200601832
https://dx.doi.org/10.1002/anie.200601832
https://dx.doi.org/10.1002/anie.200601832
https://dx.doi.org/10.1002/anie.200701158
https://dx.doi.org/10.1002/anie.200701158
https://dx.doi.org/10.1021/acs.joc.7b03248
https://dx.doi.org/10.1021/acs.joc.7b03248
https://dx.doi.org/10.1002/chem.200800890
https://dx.doi.org/10.1002/chem.200800890
https://dx.doi.org/10.1002/chem.200800890
https://dx.doi.org/10.1002/chem.200800890
https://dx.doi.org/10.1021/ja800793t
https://dx.doi.org/10.1021/ja800793t
https://dx.doi.org/10.1021/ja800793t
https://dx.doi.org/10.1002/anie.201813400
https://dx.doi.org/10.1002/anie.201813400
https://dx.doi.org/10.1021/acs.joc.9b03054
https://dx.doi.org/10.1021/acs.joc.9b03054
https://dx.doi.org/10.1021/acs.joc.9b03054
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c03958?ref=pdf


Chem. 2020, 85, 2355−2368. (c) Zhu, Z.-H.; Ding, Y.-X.; Wu, B.;
Zhou, Y.-G. Design and Synthesis of Chiral and Regenerable
[2.2]paracyclophane-based NAD(P)H Models and Application in
Biomimetic Reduction of Flavonoids. Chem. Sci. 2020, 11, 10220−
10224.

■ NOTE ADDED AFTER ASAP PUBLICATION
Due to a production error, this paper was published on the
Web on November 12, 2020, with Figure 11 being double
column width. The corrected version was reposted on
November 16, 2020.

ACS Catalysis pubs.acs.org/acscatalysis Perspective

https://dx.doi.org/10.1021/acscatal.0c03958
ACS Catal. 2020, 10, 13834−13851

13851

https://dx.doi.org/10.1039/D0SC04188B
https://dx.doi.org/10.1039/D0SC04188B
https://dx.doi.org/10.1039/D0SC04188B
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c03958?ref=pdf

