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Abstract: Herein we report a Pd-catalyzed dearomative
methoxyallylation of 3-nitroindoles with readily available
allyl carbonates. Good yields (up to 86 %) and diastereoselec-
tivity (up to > 20:1 dr) are obtained for a wide range of
substrates. The compatibility of gram-scale synthesis and the
relatively low catalyst loading (down to 1 mol% of [Pd])
enhance the practicality of this method. The kinetic experi-
ments indicate that the rate-determining step of this reaction is
the nucleophilic attack of the alkoxide anion.

Palladium-catalyzed allylic substitution reaction has become
one of the most important methods for constructing C�C or
C�X (X = O, N, S, etc.) bonds in modern organic chemistry.[1]

However, most examples of this type of reactions can
basically construct only one bond. In this regard, nucleo-
philic-addition-induced allylic alkylation (NAAA) reaction,
in which an external nucleophile initially attacks a Michael
acceptor, and the newly formed nucleophile reacts with the
electrophilic p-allyl-Pd species, becomes quite attractive
(Scheme 1a).[2] Two distinct chemical bonds are formed
sequentially in a well-controlled fashion, and versatile dual
functionalization of a polarized C=C double bond can be
achieved by using this method.[3] To be noted, this reaction
design largely relies on the utilization of benzylidenemalo-
nonitrile or its analogs as the Michael acceptors, thus
impeding further synthetic applications of this method.

Catalytic dearomatization reactions have proved them-
selves as a powerful method for converting simple planar
aromatics into diverse three-dimensional, cyclic products.[4] In
this regard, the dearomatization of indoles triggered by
nucleophilic addition to an intra- or intermolecular electro-
phile has been extensively studied.[5] On the other hand, the
dearomatization of electron-deficient indoles has also been
recognized as a complementary method to access densely
functionalized indolines.[6] Particularly, the dearomative cyc-
lization of 3-nitroindoles with a series of amphiphilic reagents
leads to the installation of a nucleophile and an electrophile at
the C2 and C3 positions of the indole ring, respectively
(Scheme 1b).[7]

Encouraged by these literature precedents, we recently
applied the NAAA strategy to the Pd-catalyzed dearomati-
zation of 3-nitroindoles with allyl methyl carbonates (Sche-
me 1c). Herein, both nucleophilic methoxy anion and elec-
trophilic p-allyl-Pd species are generated from the allyl
methyl carbonates, and react at the C2 and C3 positions of 3-
nitroindoles, respectively, affording the desired dearomatized
products.[2b] Compared with the known dearomative cycliza-
tion of 3-nitroindoles, the major challenge of this reaction
design is how to regulate the reactivity of the three
components towards the expected reaction sequence. We
envisioned that this particular sequence can be achieved since
methoxy anion, a hard nucleophile, preferentially attacks 3-
nitroindole, a hard Michael acceptor. On the contrary, the in
situ generated carbanion, a soft nucleophile, is more prone to
attack the soft electrophilic p-allyl-Pd species. Herein, we
report the results of this study.

We initiated our studies by optimizing the conditions for
the model reaction of N-tert-butyloxycarbonyl-3-nitroindole
(1a) with allyl methyl carbonate (2 a, 2 equiv) (Table 1, see
the Supporting Information for more details). First, the
performance of various ligands was evaluated in the presence
of Pd2dba3 (5 mol%) as the Pd precatalyst in MeCN at room
temperature. Among tested, dppf (L5) and Xantphos (L6)
were able to promote the desired reaction, delivering the
target molecule 3aa in moderate NMR yields and diastereo-
meric ratio (33–45% yields, 4.1–6.4:1 dr) (entries 5 and 6),
while phosphinooxazoline (PHOX) ligand L9 showed
increased efficiency in terms of the NMR yield (77%) and
diastereomeric ratio (7:1) of 3aa (entry 9). Further screening

Scheme 1. Palladium-catalyzed NAAA reactions and dearomatization
of 3-nitroindoles.
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of solvents and Pd precatalyst did not lead to better results.
Subsequent investigations indicated that a full conversion of
1a was observed, along with an increased yield of 3 aa, when
reactions were conducted at elevated temperatures (40 or
50 8C) (entries 10 and 11). At 40 8C, product 3aa was isolated
in 69% yield with 7.0:1 dr. Furthermore, reducing the number
of equivalents of 2a, catalyst loading or solvent concentration
was detrimental to reaction yield (entries 12–14).

With the optimized reaction conditions in hand (entry 10,
Table 1), we next investigated the scope of indoles (Table 2).
In general, 3-nitroindoles bearing an electron-withdrawing
group (CO2Me, F, Cl, Br, NO2, CN) attached at the C4, C5, or
C6 position of the indole ring provided their desired products
(3ba, 3ca, 3ea–3ka) in moderate to good yields (52–85%)
and diastereoselectivity (3.8:1–8.7:1 dr). The lower yield of
3da (34 %) with an electron-donating methyl group attached
at the C5-position of the indole ring was likely attributed to

the poor electrophilicity of the substrate. To our delight, the
reactions of 7-substituted 3-nitroindoles provided their
desired products (3 la–3ra, 71–86% yields) with excellent
diastereoselectivity (> 20:1 dr), and the substituents with
varied electronic properties were well tolerated at this
position. The structure and relative configurations of 3 ca
and 3na were unambiguously established by X-ray crystallo-
graphic analyses.[8] Notably, the bromine substituents on the
indole ring were tolerated under Pd0-catalysis (3ba, 3ea, 3ka
and 3qa). Besides, 7-azaindole could be also applied in this
reaction, leading to 3sa in 70% yield with 6.9:1 dr. Finally, the
N-Boc protecting group was found crucial for this reaction.
When N-CO2Me protected substrate was subjected to the
standard conditions, the yield of the desired product was
significantly decreased (3ta, 28%). A byproduct 1-allyl-3-
nitro-1H-indole (3ta’) was obtained in 61 % yield.[9] The
incorporation of other N-protecting groups such as Ts and Bn
led to no desired products.

Next, the scope of allyl carbonates was also tested
(Table 3). Substrates with trimethylsilyl or propenyl group
gave products (3ab and 3ac) in moderate yields (69% and
75% respectively) and diastereoselectivity (6.4:1 dr). Various

Table 1: Optimization of the reaction conditions.[a]

Entry[a] L T [8C] Yield [%][b] dr[b]

1 L1 rt – –
2 L2 rt 5 –
3 L3 rt – –
4 L4 rt messy –
5 L5 rt 33 4.1:1
6 L6 rt 45 6.4:1
7 L7 rt 2 –
8 L8 rt – –
9 L9 rt 77 7.0:1
10[d] L9 40 84 (69[e]) 7.0:1
11[d] L9 50 81 6.8:1
12[d,f ] L9 40 74 5.7:1
13[d,g] L9 40 63 6.3:1
14[d,h] L9 40 41 8.2:1

[a] Reaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), Pd2dba3

(5 mol%), L (11 mol%) in solvent (0.5 mL) at specific temperature
(T [8C]) for 72 h under argon. [b] Determined by 1H NMR of the crude
reaction mixture using CH2Br2 as an internal standard. [c] (rac)-L1
(22 mol%) was used a mixture of two diastereoisomers (1.1:1 dr). [d] For
48 h. [e] Isolated yield of 0.2 mmol scale reaction. [f ] 2a (0.15 mmol)
[g] Pd2dba3 (2.5 mol%), L9 (5.5 mol%). [h] With MeCN (1 mL).

Table 2: Substrate scope of 3-nitroindoles.[a]

[a] Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), Pd2dba3

(5 mol%), L9 (11 mol%) in MeCN (1.0 mL) at 40 8C for 48 h under
argon. Dr values were determined by 1H NMR of the crude reaction
mixture. Isolated yields of the major diastereoisomers were reported.
[b] For 24 h. [c] For 36 h.
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aryl allyl carbonates bearing either an electron-donating or an
electron-withdrawing group were well tolerated regardless of
the substitution patterns, providing the desired dearomatized
products (3 ad–3ao) with moderate yields (66–79 %) and
diastereoselectivity (4.3:1–6.3:1 dr). Notably, the diastereo-
selectivity of the reactions with ortho-substituted aryl allyl
carbonates was slightly reduced (3ag and 3ah vs. 3ai, 3al and
3am), probably due to the steric hinderance in the transition
state for the nucleophilic attack to the p-allyl-Pd species.

A successful gram-scale synthesis of 3qa demonstrated
the practicality of this reaction (Scheme 2). Product 3qa was
obtained in 77 % yield (1.02 g) with > 20:1 dr at a lower
catalyst loading (1 mol% based on [Pd]), albeit that a longer
reaction time (72 h) was required. Diverse transformations of
the dearomatized product 3qa were also carried out. First, the
hydrogenation of the terminal C=C double bond was
executed in the presence of 10 % Pd/C, affording product 4
in 89 % yield. In addition, the nitro group in 3qa could be
easily reduced to amine with Zn in CH3CO2H, affording 5 in
quantitative yield. Furthermore, the bromine substituent in
3qa could be readily transformed into a phenyl group to
afford 6 in 94 % yield via Suzuki–Miyaura cross-coupling
reaction.

To shed light on the reaction mechanism, we have
performed Hammett analysis for a series of 3-nitoindoles by
1H NMR (Figure 1, see SI for details). A positive 1 value
(2.20) was observed, indicating the accumulation of negative
charge during the rate-determining step. Based on these
results, a plausible catalytic cycle was proposed for the Pd-
catalyzed dearomative methoxyallylation of 3-nitroindoles
(Figure 2a). The reaction is initiated with the coordination of
Pd0 catalyst A to the allylic carbonate. The subsequent

Table 3: Substrate scope of allylic carbonates.[a]

[a] Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), Pd2dba3

(5 mol%), L9 (11 mol%) in MeCN (1.0 mL) at 40 8C for 48 h under
argon. Dr values were determined by 1H NMR of the crude reaction
mixture. Isolated yields of the major diastereoisomers were reported.

Scheme 2. Gram-scale synthesis and transformations of 3qa.

Figure 1. Hammett plot of the reaction.

Figure 2. a) A proposed catalytic cycle. b) A working model for the
diastereoselective control and X-ray crystallographic structures of 3ca
and 3na.
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oxidative addition leads to the p-allyl-PdII intermediate B
with the concomitant release of methoxy anion. The nucle-
ophilic attack of this methoxy anion to the C2 position of the
3-nitroindole generates the key intermediate C with a formal
negative charge developed at the C3 position of the indole
ring. This step is likely the rate-determining step according to
the results of Hammett plot analysis. Finally, the nucleophilic
attack of C to B furnishes the desired dearomatized product
with the regeneration of Pd0 catalyst. According to the
relative configuration of 3ca and 3 na, the allyl group is
preferably installed at the opposite side of the indoline ring
with respect to the methoxy group due to the minimized steric
hindrance in the transition state for the nucleophilic attack to
p-allyl-Pd species (Figure 2b).

In summary, Pd-catalyzed nucleophile-addition-induced
allylic alkylation strategy was successfully employed in the
dearomatization of electron-deficient indoles. Intermolecular
dearomative methoxyallylation reaction of 3-nitroindoles
with allyl carbonates proceeded smoothly under mild con-
ditions. The target multi-functionalized indoline products
were obtained in good yields with good to excellent diaste-
reoselectivity. The practicality of this method was exemplified
by its wide substrate scope, compatibility of gram-scale
synthesis at low catalyst loading, and expedient transforma-
tions of the product. The Hammett analysis revealed the
nucleophilic attack of methoxy anion to 3-nitroindoles as the
rate-determining step in the proposed catalytic cycle.
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