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ABSTRACT: While phenols are frequent and convenient aryl sources in cross-coupling, typically as sulfonate esters, the direct
cross-Ullmann coupling of two different sulfonate esters is unknown. We report here a general solution to this challenge catalyzed by
a combination of Ni and Pd with Zn reductant and LiBr as an additive. The reaction has broad scope, as demonstrated in 33
examples (65% ± 11% average yield). Mechanistic studies show that Pd strongly prefers the aryl triflate, the Ni catalyst has a small
preference for the aryl tosylate, aryl transfer between catalysts is mediated by Zn, and Pd improves yields by consuming arylzinc
intermediates.

The development of palladium-catalyzed cross-coupling has
led to biaryls becoming a cornerstone of pharmaceutical

and medicinal chemistry.1 The significance of biaryls has driven
the development of new cross-coupling approaches involving
different transition-metal catalysts2 or even eschewing a metal
catalyst.3 One major challenge for all cross-coupling approaches
is the availability of starting materials.4 The low commercial
availability of aryl nucleophiles has led to the development of
improved methods to access them5 as well as C−H arylation
methods6 and cross-Ullmann methods7,8 that avoid them.4

A central challenge of cross-Ullmann reactions is achieving
selectivity for the heterocoupling product over homocoupling
products.7 We introduced a new, multimetallic approach9 based
upon the different order of reactivity of palladium bisphosphine
catalysts and nickel bipyridine catalysts with aryl halides and aryl
triflates (Scheme 1A): the nickel catalyst prefers the C−Cl/Br
bonds, while the palladium catalyst prefers C−OTf bond.10
While this strategy has proven general, it was not clear whether it
could be extended beyond coupling aryl triflates with aryl
halides. We were particularly interested in the cross-Ullmann
coupling of phenol derivatives because of their importance in
cross-coupling11 and the ubiquity of phenols in nature.12 The
most-used phenol derivatives in cross-coupling are sulfonate
esters, yet the cross-Ullmann coupling of two different aryl
sulfonate esters is unknown.13−16 In exciting, concurrent work,
Zeng recently reported on the cross-Ullmann coupling of
different phenol derivatives using a different, directing-group-
based approach.17

Our multimetallic strategy would appear to be incompatible
with this goal: while the relative reactivity between aryl halides
and aryl triflates can be manipulated for selective coupling at
either bond (Scheme 1A),10 the analogous inversion of
selectivity between two different sulfonate esters has not been
reported.18 Although there are relatively few studies on this
topic, aryl tosylates are generally considered less reactive than
aryl triflates.19,20 We report here a solution to this challenge via a
nickel catalyst with unusual sulfonate selectivity18 (Scheme 1B)

as well as studies that shed light on the mechanism of the
reaction.
Preliminary studies examined the coupling of p-anisyl triflate

(1a) with phenyl tosylate (2a) in the presence of nickel and
palladium catalysts, salt additives, and reductants (Table 1). The
optimal conditions were with 1 mol % of each catalyst (1:1.2
metal/ligand ratio), Zn reductant, and LiBr at 40 °C overnight
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Scheme 1. Cross-Ullmann Approaches to Biaryls Using
Sulfonate Esters
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(Table 1, entry 1). Unless otherwise noted (footnote c in Table
1), low yields were accompanied by larger amounts of dimeric
biaryls (biphenyl and bianisole).
Salts were added to facilitate catalyst turnover9c (by activating

the zinc surface and converting nickel triflate to nickel bromide),
to stabilize potential arylpalladium(II) intermediates,20 and to
modulate transmetalation.21 A variety of bromide salts were
effective (Table 1, entries 5−9), but ZnBr2 was inhibitory9c

(entry 10). However, Zn reductant was essential and could not
be replaced with Mn (entry 4).
While a variety of phosphines and bipyridines supported the

coupling, the best yields were obtained with 1,4-bis(diphenyl-
phosphino)butane (dppb) and 4,4′-diphenyl-2,2′-bipyridine
(L1, dpbpy) (Table 1 and Table S1 in Supporting Information).
A variety of phosphines other than dppb resulted in moderate
yields of 3a (29−61% yield, Table S1) due to decreased
selectivity for cross-coupling over homocoupling; 1a and 2a
were completely consumed. In contrast, the results with
nitrogen ligands had a strong dependence on electronics
(Table 1, entries 1 and 11−15). The optimal ligand, L1, bears
mildly electron-withdrawing groups. Reactions with simple 2,2′-
bipyridine (bpy) (L5) or phenanthroline (phen) (L6)
consumed both starting materials and formed cross-product
3a in 65 and 62% yields. Reactions with ligands that were more
electron-rich (L2) and more sterically hindered (L4) provided
lower yields of 3a due to slow conversion of both 1a and 2a.
Reactions with a more electron-poor ligand (L3) resulted in
primarily bianisole from homocoupling of 1a and slow

consumption of 2a. The catalyst loading in some cases can be
lowered to 0.5 mol %, the lowest reported for Ni/Pd
multimetallic cross-Ullmann reactions (entry 16 and Scheme
2, 3d, 3p, 3w, 3af).9

These conditions are compatible with a variety of functional
groups (Scheme 2), including ketones (3e and 3m), esters (3f
and 3g), dimethylaniline (3i), trifluoromethoxy (3i), alkyl
chloride (3j), aryl chloride (3k), Boc-protected alkyl amine (3l),
and arylboronic acid pinacol ester (3m). More sterically
hindered pairings could also be coupled, using slightly modified
conditions: a higher reaction temperature (60 °C) and an
additional 0.5 equiv of aryl tosylate (3n−3t). Scaling the
synthesis of 3w 10-fold (from 0.5 to 5.0 mmol) provided a
similar yield of product (73% yield at 0.5 mmol vs 68% yield at
5.0 mmol).
The ability to cross-couple two phenol derivatives can provide

extra flexibility in synthesis, because phenols are more abundant
than arylmetal reagents, and in some cases phenols are the most
convenient arene source (see Supporting Information Table
S2).4,22 For example, we coupled a variety of aryl triflates and
tosylates derived from natural products (3w, 3x, 3y, 3ab, 3ac,
3ad, 3ae, 3af, 3ag), drug intermediates (3u, 3v, 3z, 3aa, 3ad, 3af,
3ag), or precursors to common materials (3aa, 3ab, 3ae).
Another feature of this biaryl synthesis is that a pair of phenols

can be coupled in two different ways, providing another
approach to improve yields. More electron-rich aryl triflates
provided higher yields (3a vs 3b, 72% vs 62% yield), but there
was no trend with aryl tosylate electronics (Tables S7−S9 in the
Supporting Information).
Mechanistically, we focused on three questions: (1)

determining the reactivity preference of each catalyst for the
substrates,18−20 (2) the mechanism of aryl transfer between
catalysts, and (3) the role of Pd in the reaction given that nickel
alone also forms product (Table 1, entries 1−3). The collected
data are consistent with the Pd catalyst reacting preferentially
with the aryl triflate and the Ni catalyst reacting with both
substrates but slightly preferring the aryl tosylate. The evidence
shows that Zn mediates the aryl transfer between Ni and Pd.
Finally, Pd improves yields by helping to balance the rate of
consumption of aryl zinc reagents with the rate of their
formation.
To shed light on the mechanism, we compared reactions with

both catalysts to reactions with a single catalyst (Figure 1). In
particular, time-course studies on the coupling of p-anisyl triflate
(1a) with phenyl tosylate (2a) were conducted under standard
conditions (A, Figure 1-I), nickel-only conditions (B, Figure 1-
II), and palladium-only conditions (C andD). We visualized the
total concentration of Ph-M and Ar-M (M = NiX,23 PdX, ZnX;
Ar = p-anisyl) by quenching reaction aliquots with iodine.24

The data in Figure 1 show strong evidence for a low, steady-
state concentration of PhZnX (Z-1) under standard reaction
conditions (Figure 1-I, Condition A). This phenylzinc species is
derived from phenyl tosylate (2a) and visualized as 8 after
iodination. Together with experiments using either catalyst
alone (Conditions B, C, and D), we can confirm that some of 8
in Condition A is derived from a phenylzinc intermediate, that
nickel has a slight selectivity for 2a, and that palladium is
selective for 1a.
Our reasoning:

(1) The reaction catalyzed by nickel catalyst alone (Con-
dition B, Figure 1-II; Tables S12 and S13) forms a

Table 1. Sulfonate Cross-Ullmann Reaction Optimizationa

entry variations from above conditions 3ab (%)

1 none 76
2 without NiCl2(dme) and L1 <5c

3 without PdCl2 and dppb 58
4 Mn instead of Zn or without Zn <5c

5 without LiBr 8c

6 2.0 equiv instead of 4.0 equiv of LiBr 63
7 NaBr instead of LiBr 72
8 KBr instead of LiBr 73
9 n-Bu4NBr instead of LiBr 54
10 ZnBr2 instead of LiBr <5c

11 L2 instead of L1 32
12 L3 instead of L1 12
13 L4 instead of L1 8c

14 L5 instead of L1 65
15 L6 instead of L1 62
16 0.5 mol % [Ni]/[Pd], 0.6 mol % dppb/L1 73d

17 Reaction setup on benchtop using standard glassware and
Schlenk line

73e

aReactions on a 0.25 mmol scale in 1.0 mL of DMF. bGas
chromatography yield vs dodecane. cMore than 75% of both 1a and
2a remained. dReaction on a 0.5 mmol scale in 1.0 mL DMF.
eIsolated yield.
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concentration of 8 (24.4 mM at 420 min) that far exceeds
the concentration of nickel catalyst (gray line, 2.5 mM,
[8]/[Ni] = 9.8), confirming that nickel to zinc trans-
metalation is possible14 and preferred over biaryl
formation.7,8,25

(2) The nickel catalyst alone (Condition B) consumes 1a and
2a at almost the same rate, with a slight preference for
tosylate 2a (Table S12, consumption of 2a/1a ≈ 1.1
between 6% and 52% conversion). This is consistent with
the stoichiometric reaction of (L1)Ni0(cod), where

tosylate 2a reacted 3.2 times faster than triflate 1a,26 but
contrary to most other reports, where triflates are much
more reactive than tosylates.18−20 This result further
suggests that other steps in the catalytic cycle besides
oxidative addition play a role in the selectivity for cross-
product 3a over dimeric biaryls.

(3) In contrast, palladium(0) does not react with phenyl
tosylate (2a) and instead oxidatively adds to p-anisyl
triflate (1a) to form 9 after iodination (Conditions C and
D, Tables S14−S16). We do not think that p-anisylzinc is

Scheme 2. Substrate Scope for the Cross-Coupling of Aryl Triflates with Aryl Tosylatesa,b

aReactions on a 0.50 mmol scale in 2.0 mL of DMF. bIsolated yield of purified material. cResults at 0.5 mol % catalyst loading (as in Table 1, entry
16). dReaction was run at 35 °C. e1.5 Equiv aryl tosylate was used. fReaction was run at 60 °C. gReaction was run on 5 mmol scale. hReaction run
with 2 equiv of ArOTs at 0.25 mmol scale. iResults at 5 mol % catalyst loading (5 mol % Ni + Pd, 6 mol % 4,4′-dimethoxy-2,2′-bipyridine + dppb).
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formed under these conditions, because [9]/[Pd] is
between 0.15 and 1.01. The arylpalladium species is
unreactive with itself, zinc, or zinc salts, because no biaryls
(3a, 4, 5) are formed.

(4) In Condition A (Figure 1-I; Tables S10 and S11), the
combined concentration of 8 (5.1 mM) and 9 (2.6 mM)
at 300 min indicates a total concentration of arylmetal
species (7.7 mM) that exceeds the combined concen-
tration of nickel and palladium catalysts (denoted with a
green line, 5.0 mM). This confirms that phenylzinc is
formed in productive reactions and suggests that both aryl
and vinyl transfer in relatedmultimetallic reactions is zinc-
mediated.9

Upon the basis of these data and literature reports, we propose
a mechanism for the nickel and palladium-catalyzed cross-
Ullmann reaction of aryl triflate with aryl tosylate in Scheme 3.27

The palladium catalyst (P-1) participates in an oxidative
addition with the aryl triflate to form an arylpalladium(II)
species20 (P-2) that is unreactive with itself or zinc. The nickel
catalyst reacts preferentially with aryl tosylate, presumably to
form arylnickel (N-2), followed by transmetalation with zinc
salts to form arylzinc Z-1 (Figure 1-II).14 The arylzinc is present
in a low, steady concentration when both catalysts are present
(Figure 1-I,II) due to the efficient consumption of Z-1 by P-2 to
form diarylpalladium (P-3).21,28 Reductive elimination fromP-3
forms cross-biaryl product 3a and regenerates palladium(0).29

The nickel salt N-3 formed after arylzinc (Z-1) formation is
reduced by zinc powder to regenerate low-valent nickel (N-1)
with the assistance of LiBr.9c

While Ni is able to form and consume arylzinc reagents, Pd
improves yields by ensuring full consumption of organozinc

reagents. Without Pd present, significant amounts of arylzinc
reagents remain (Condition B, 10% yield 8, 6% yield 9),
diminishing the yield of product 3a (58% for B, 74% for A).
In closing, we have found that the nickel and palladium system

we first reported for the cross-coupling of aryl triflates with aryl
bromides is capable of selectively cross-coupling aryl triflates
with aryl tosylates.30 This is the first cross-Ullmann reaction of
two different sulfonate esters and suggests that methods to
couple other “alike” electrophiles can be achieved. In this case,
the nickel catalyst displays anomalous selectivity for the aryl
tosylate over the aryl triflate. The reaction is general and will be
especially useful in cases where phenols are the most convenient
starting materials.

Figure 1. Assessment of organometallic reagents present in cross-Ullman couplings. (I) Concentrations of 8 and 9 in Condition A vs time. (II)
Concentrations of 8 and 9 in Condition B vs time. Concentrations of 8 and 9 were determined by gas chromatography analysis vs an internal standard
after iodination of aliquots of the reaction mixtures. See Supporting Information Tables S10−S16 for further details, including data on Conditions C
and D.

Scheme 3. Proposed Ni/Zn/Pd Mechanism for Cross-
Ullmann Reaction of Aryl Triflates with Aryl Tosylatesa

aHalide exchange is likely dynamic, X = Br, OTs, or OTf. Ar = p-
anisyl. For nickel oxidation state, n = 2 or 3.
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Bipyridine: An Efficient Ligand in the Cobalt-Catalyzed Synthesis of
Organozinc Reagents from Aryl Chlorides and Sulfonates. Synlett 2006,
2006, 881−884. (b) Rohbogner, C. J.; Dieǹe, C. R.; Korn, T. J.;
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