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ABSTRACT: A methyl group can have a profound impact on the pharmacological properties of organic molecules. Hence,
developing methylation methods and methylating reagents is essential in medicinal chemistry. We report a palladium-catalyzed
dimethylation reaction of ortho-substituted iodoarenes using dimethyl carbonate as a methyl source. In the presence of K2CO3 as a
base, iodoarenes are dimethylated at the ipso- and meta-positions of the iodo group, which represents a novel strategy for meta-C−H
methylation. With KOAc as the base, subsequent oxidative C(sp3)−H/C(sp3)−H coupling occurs; in this case, the overall
transformation achieves triple C−H activation to form three new C−C bonds. These reactions allow expedient access to 2,6-
dimethylated phenols, 2,3-dihydrobenzofurans, and indanes, which are ubiquitous structural motifs and essential synthetic
intermediates of biologically and pharmacologically active compounds.

A methyl group can modulate the solubility, hydrophilicity,
and conformation of drug molecules, which is termed the

“magic methyl effect”,1,2 and a number of small-molecule drugs
contain at least one methyl group.3 In particular, 2,6-
dimethylated arenes are essential motifs in many pharmaceut-
ical and bioactive molecules. For example, among the top 200
small-molecule pharmaceuticals by retail sales in 2018, three
drugs contain a 2,6-dimethylated arene moiety, and two drugs
have a compound containing the moiety as the major
ingredient (Figure 1).4 Developing facile and efficient

methylation methods is the long-term goal in organic synthesis.
While the traditional methods are primarily based on
nucleophilic substitution, transition-metal-catalyzed methyla-
tion reactions have made rapid progress.5−9 Notably, direct
C−H methylation is emerging as a highly desirable
method.10−32 C−H methylation not only provides an
innovative strategy for introducing methyl groups but, more
importantly, allows for the direct methylation of bioactive
molecules at a late stage. The current transition-metal-
catalyzed C−H methylation reactions primarily rely on the
use of directing groups. For aryl C−H bond activation, C−H
bonds ortho to the directing groups are methylated, which
restricts the scope of accessible products. An exceptional

example is the meta-C−H methylation reported by the Yu
group.33 Although non-chelate-assisted C−H methylation has
been developed, the reactions were limited to heteroarenes
containing reactive C−H bonds.34−38

On the other hand, although a variety of methylating
reagents are available,39 it is still desirable to develop low-cost
and eco-friendly ones. Dimethyl carbonate (DMC) is
undoubtedly an ideal methylating reagent, because it is
inexpensive, easily handled, and eco-friendly.40−42 However,
as a methylating reagent, DMC has only been utilized in
nucleophilic substitution reactions. To the best of our
knowledge, it has not been applied in transition-metal-
catalyzed cross-coupling reactions or C−H methylation
reactions.
Herein, we report Pd-catalyzed ipso- and meta-dimethylation

of ortho-functionalized iodoarenes through cascade C−H
functionalization. In the presence of K2CO3, iodoarenes are
dimethylated at the ipso- and meta-positions of the iodo group.
By using KOAc, the third C−H activation and C(sp3)−C(sp3)
coupling occurred (Figure 2). The ortho-functionalized
iodoarene substrates are readily available. Notably, the reaction
represents an innovative strategy for meta-C−H methyla-
tion.43−48 The iodo group acted as a traceless directing group
to enable the methylation of its meta-C−H bond with the
ortho-substituents as the relaying directing group. It should be
mentioned that the homocoupling of ortho-iodoanisoles has
been reported.49,50 The homocoupling has to be suppressed for
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Figure 1. Drugs with an ortho,ortho-dimethylated arene moiety.
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developing cross-coupling reactions with external reagents.
DMC was used as the methyl source in the reactions. This is
the first time DMC is used as a methyl source in transition-
metal-catalyzed cross-coupling reactions and C−H methylation
reactions.
We commenced research by using 1a as the model substrate.

After extensive studies, 3a was formed in 80% yield under the
conditions shown in Table 1 (entry 1). The yield remained

unaffected when the reaction was scaled up to 1.22 g scale
(entry 1), and a 2-bromoanisole derivative was also suitable by
using a P(o-tol)3 ligand (entry 2).
It is noted that a side product, 4a, was observed when

Pd(OAc)2 was used (entry 3). The 2,3-dihydrobenzofuran-
forming reaction is very intriguing. It involves triple C−H
activation and threefold C−C bond formation. The reaction
also represents an innovative and facile method for the
synthesis of 2,3-dihydrobenzofurans,51−54 which are ubiquitous
in naturally occurring compounds, pharmaceuticals, and
agrochemicals.55−57 Therefore, we set out to study the
reaction. Remarkably, 4a was formed as the major product
when KOAc was used (entry 4), and the yield was enhanced to
80% by tuning the conditions (entry 5). By using P(o-tol)3, 2-
bromoanisole was also reactive (entry 6). (For a detailed
conditions survey, see the Supporting Information.)
The substrate scope of the dimethylation reaction was

investigated. A range of 2-iodoanisoles bearing various

functionalities were dimethylated efficiently (Scheme 1, 3b−
3l). 2-Bromoanisoles were also reactive by using P(o-tol)3 (3b,

3d), and heteroaryl groups, including pyridyl and pyrrolyl,
were compatible (3m, 3n). For transition-metal-catalyzed C−
H functionalization, it is often challenging to functionalize aryl
C−H bonds if both of the positions ortho to the C−H bonds
are substituted. Notably, 2-iodoanisoles bearing a substituent
meta to the methoxy group could be dimethylated (3o−3t),
except for 1u (3u). The substrates derived from heterocycles
benzofuran and indole were suitable (3v, 3w). If the other
ortho positions of anisoles were blocked with a substituent,
monomethylated products were formed (3y−3ab). The
reaction of 1a with diethyl carbonate was also examined.
The desired diethylated product was not observed.
The substrate scope of the 2,3-dihydrobenzofuran-forming

reaction was also probed. As shown in Scheme 2, the reaction
was compatible with a wide array of functional groups (4b−
4ae). Pyridyl and pyrrolyl groups were compatible (4m, 4n),
and 2-bromoanisoles were also reactive (4b, 4d). Two isomers
were generated in the formation of 4o. ortho-Substituted 2-
iodoanisoles could also be transformed into the corresponding
2,3-dihydrobenzofurans (4y, 4aa, 4ab, 4af−4ai, and 4ak). The
optimal yields could still be obtained when the amounts of
KOAc, n-Bu4NBr, and 2 were reduced. For substrates 1aj and
1z, products resulting from aryl C−H bond activation were
obtained. Notably, the reaction could be scaled up (4ah).
Next, we turned to study the reactions of other ortho-

substituted iodobenzenes. Benzylic C−H bonds could also be
utilized to enable the dimethylation (Scheme 3, 6a−6d). For
halogen-directed C−H activation, most of the current
reactions involve the activation of methyl C−H bonds, and
the reactions of secondary C−H bonds are scarce and limited

Figure 2. Transition-metal-catalyzed C−H methylation.

Table 1. Condition Survey

yield (%)a

entry base (equiv) 3a 4a

1 K2CO3 (2) 80 (75b, 78c) trace
2d K2CO3 (4) 53 trace
3e K2CO3 (2) 62 6
4e KOAc (4) 5 58
5e,f KOAc (4) 3 80 (77b)
6e,f,g KOAc (4) 7 48

aThe yields were determined by 1H NMR analysis of the crude
reaction mixture. bIsolated yield. c1.22 g of 1a. dEthyl 3-bromo-4-
methoxybenzoate, P(o-tol)3 (20 mol%), n-Bu4NBr (4 equiv), 140 °C.
ePd(OAc)2.

fCO(OMe)2 (12 equiv), n-Bu4NBr (5 equiv), NMP
solvent, 100 °C. gEthyl 3-bromo-4-methoxybenzoate, P(o-tol)3 (20
mol%), 120 °C.

Scheme 1. Mono- and Dimethylation of 2-Iodoanisoles

aThe corresponding 2-bromoanisole was used, P(o-tol)3 (20 mol%),
K2CO3 (4 equiv), n-Bu4NBr (4 equiv), 140 °C.

bn-Bu4NBr (4 equiv).
cK2CO3(4 equiv). n-Bu4NBr (4 equiv). d120 °C. eMonomethylated
product. f2 (5 equiv). gThe red circles indicate the initial position of
the iodides.
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to intramolecular ones.58−63 Halogen-directed benzylic secon-
dary C−H activation under palladium catalysis has only been
applied in intramolecular cyclization reactions.61−63 Notably, a
benzyl group is an ideal shuttle to activate remote C−H bonds
in this reaction, because it is a common protecting group and
can be removed easily. Furthermore, the α-C−H bond of an
ester group also assisted the dimethylation reaction effectively
(6e). However, 1-ethoxy-2-iodobenzene failed to form the
dimethylated product.
Remarkably, ortho-alkyl-substituted iodobenzenes also

underwent dimethylation and subsequent cyclization to form
ortho-methylindanes (Scheme 4). The reaction provides an
innovative synthetic method for substituted indanes,64−68

which are widely found in drugs and natural products and
find extensive applications in materials science.69,70

Trideuteriomethylation represents a valuable strategy for
structural modification in drug discovery,71,72 and trideuterio-
methylated drugs have been developed.73 Therefore,
trideuteriomethylation was investigated. Both of the reactions
proceeded smoothly when CO(OCD3)2 was used (Figure 3a).

The deuteration of the methoxy group was also observed in the
dimethylation reactions. (For the mechanism, see Figure 4.)

Many of the 2,6-dimethylated anisole products, such as 3f,74

3g,75 3h,76 3i,77 3k,78 3l,79 3o,80 and 3p,81, and their
demethylated analogues, the 2,6-dimethylphenols,82−85 are
essential intermediates in the syntheses of biologically and
pharmacologically active compounds (Figure 3c). Demethyla-
tion of the 2,6-dimethylanisole products was exemplified by the
reactions of 3f and 3f-D (Figure 3b). To demonstrate the
synthetic utility of the 2,3-dihydrobenzofuran products, we
synthesized compounds 9 and 10 by using products 4ad and

Scheme 2. 2,3-Dihydrobenzofuran-Forming Reactions

aThe corresponding 2-bromoanisole was used, P(o-tol)3 (20 mol%),
120 °C. bKOAc (6 equiv). cPd(OAc)2 (20 mol%), KOAc (6 equiv).
dKOAc (2.5 equiv), n-Bu4NBr (4 equiv). e2 (5 equiv). f2 (8 equiv).
g1.29 g scale. hThe red circles indicate the initial position of the
iodides.

Scheme 3. Dimethylation of 2-Iodoanisole Derivatives

aK2CO3 (4 equiv), n-Bu4NBr (4 equiv).

Scheme 4. Dimethylation and Cyclization of 2-Alkyl-1-
iodobenzenes

Figure 3. Practical applications.
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4ah, respectively (Figure 3d). 9 and 10 are the synthetic
intermediates of an endopeptidase inhibitor86 and an IDO1
inhibitor,87 respectively. The 2-iodoanisole substrate in the
synthesis of 4ah was readily prepared from cheap vanillic acid.
The reactions also allow for the methylation of molecules with
structural complexity or intriguing properties (Figure 3e). For
example, the estradiol-derived iodide and Mecarbinate88 could
be dimethylated (11 and 12). The dimethylation reaction also
provides an easy access to a precursor for the synthesis of a
liquid crystal with composition 1389,90 and bioactive
compound 14.91−93 The tyrosine-derived iodide was also
transformed to compound 15. All the 2-iodoanisole substrates
in the syntheses of 11−15 were readily prepared (see
Supporting Information).
Preliminary mechanistic studies were conducted (see

Supporting Information). Whereas the palladacycle derived
from 2-iodoanisole did not react with DMC in the absence of a
halide source, the dimethylated product was formed in the
presence of n-Bu4NBr, albeit in a low yield. On the other hand,
when CH3I was used instead of DMC in the reaction of 1a,
only a trace amount of the dimethylated product was observed.
However, MeI could dimethylate the palladacycle in 10% yield.
Therefore, MeBr could be the actual methylating reagent, and
DMC may be a methyl source. However, MeI could not be
ruled out as the methylating reagent. n-Bu4NBr acted as the
bromide source in the reaction. Furthermore, n-Bu4NBr may
also promote the reaction by stabilizing palladium catalyst.94,95

It should be mentioned that the use of MeBr is not desirable
due to its high toxicity and the difficult handling of a gas, which
is evidenced by the fact that MeBr is much less frequently used
as a methylating reagent than MeI. Therefore, DMC is still an
ideal or even necessary methyl source. Furthermore, Me2SO4,
PO(OMe)3, and MeOTs were also competent methylating
reagents in the dimethylation reaction, but the reactions were
low-yielding. However, the 2,3-dihydrobenzofuran product was
not observed using PO(OMe)3 as the methylating reagent.
When the dimethylation reactions were carried out in the

presence of deuterated reagents, the methoxy group was
deuterated by CD3OD and d7-DMF, and the deuteration
almost failed to occur in the presence of D2O (see Supporting
Information). These outcomes indicate that the alkylPdII

species were reduced primarily by CD3OD or d7-DMF instead
of protonated by a free proton. It is noted that the two ortho-
methyl groups were not deuterated, which implies that C−H
bonds of the methyl groups were not activated. Therefore, it

can be inferred that, although both KOAc and K2CO3 could
promote the C−H activation of the methoxy groups and the
arenes, only KOAc could enable the last C(sp3)−H activation
of the methyl group by the C(sp3)−PdII species. As a
consequence, the use of KOAc led to triple C−H activation
and the formation of 2,3-dihydrobenzofuran, and K2CO3 only
gave dimethylated products. The detailed mode of action of
these two bases in the reactions remains to be investigated.
Notably, the Baudoin group found very recently that pivalate
could promote C(sp3)−H activation by alkylpalladium
species.96 Furthermore, it has been reported that carboxylates
could promote Pd-catalyzed C−H functionalization reactions
of aryl halides more efficiently than carbonates.97−101

Based on the above results, a plausible mechanism is
proposed in Figure 4. Palladacycle B is formed by C(sp3)−H
activation. B undergoes oxidative addition with methyl halides
that are generated from DMC, affording C. The reductive
elimination of C gives D, which then cleaves the aryl C−H
bond to form a second palladacycle, E. E undergoes the same
process as that for the formation of D to introduce a second
methyl group and gives G. Using K2CO3, G is protonated by
DMAc or CH3OH that is generated from DMC, delivering
dimethylated product 3b. DMC not only should act as the
methyl source but also could release CH3OH to reduce PdII

species. Using KOAc, the third activation of methyl C−H
bonds occurs to form palladacycle H. The reductive
elimination of H yields 4b and releases Pd0 species.
In summary, we have developed innovative Pd-catalyzed C−

H methylation reactions of ortho-substituted iodoarenes by
using dimethyl carbonate as a methyl source. It is the first time
for DMC to be used as a methyl source in transition-metal-
catalyzed cross-coupling reactions. By using K2CO3 as a base,
iodoarenes are dimethylated at the ipso- and meta-positions of
the iodo group, yielding 2,6-dimethylated arenes. The reaction
represents a novel strategy for meta-C−H methylation. By
using KOAc, dihydrobenzofurans or indanes are formed
through cascade triple C−H activation. The methylation of
complex molecules and trideuteriomethylation have been
demonstrated. Further studies aimed at developing other
DMC-based methylation reactions and elucidating the detailed
mechanism, in particular the roles of inorganic bases, are
underway.
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