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ABSTRACT: Enantioselective desymmetrization by direct monofunctionalization of prochiral diols is a powerful strategy to prepare
valuable synthetic intermediates in high optical purity. Boron acids can activate diols toward nucleophilic additions; however, the
design of stable chiral catalysts remains a challenge and highlights the need to identify new chemotypes for this purpose. Herein, the
discovery and optimization of a bench-stable chiral 9-hydroxy-9,10-boroxarophenanthrene catalyst is described and applied in the
highly enantioselective desymmetrization of 2-aryl-1,3-diols using benzylic electrophiles under operationally simple, ambient
conditions. Nucleophilic activation and discrimination of the enantiotopic hydroxy groups on the diol substrate occurs via a defined
chairlike six-membered anionic complex with the hemiboronic heterocycle. The optimal binaphthyl-based catalyst 1g features a large
aryloxytrityl group to effectively shield one of the two prochiral hydroxy groups on the diol complex, whereas a strategically placed
“methyl blocker” on the boroxarophenanthrene unit mitigates the deleterious effect of a competing conformation of the complexed
diol that compromised the overall efficiency of the desymmetrization process. This methodology affords monoalkylated products in
enantiomeric ratios equal or over 95:5 for a wide range of 1,3-propanediols with various 2-aryl/heteroaryl groups.

The catalytic enantioselective desymmetrization of simple
bifunctional substrates such as diols is an attractive

strategy to prepare useful optically enriched materials where,
unlike kinetic resolution strategies, quantitative yields can
theoretically be achieved.1,2 To this end, direct and selective
monofunctionalization of prochiral 1,3-diols can afford chiral
building blocks of great synthetic value, and nonenzymatic
methods often demonstrate a wider substrate scope (Figure
1A). Compared to meso-1,2-diols, available methodology for
enantioselective desymmetrization of 1,3-diols is limited.
Indirect,3 intramolecular (cyclative),4−8 and other catalytic
methods exist to desymmetrize narrow classes of substrates
such as 2-heteroatom substituted (halo, N, O) 1,3-diols.9−16

Direct intermolecular catalytic desymmetrization methods for
2-alkyl/aryl 1,3-diols include enantioselective monoacylations
of 2-aryl-1,3-propanediols catalyzed by a chiral dinuclear zinc
catalyst, from Trost and co-workers,17 the chiral 4-amino-
pyridine catalyzed method of Suga and co-workers,18 and the
aminophosphonite catalyzed benzoylation of Fujimoto and co-
workers19 (Figure 1B). While these methods produce
monofunctionalized 1,3-diols with good to high enantioselec-
tivities, they are restricted by the use of cryogenic conditions,
variable selectivity, and/or competing difunctionalization.
Furthermore, these methods provide base-sensitive acylated
products. Consequently, there remains a need for mild catalytic
methods to access optically enriched derivatives of 2-
substituted-1,3-propanediols O-functionalized with comple-
mentary groups. Because of their stability and their ease of
removal using hydrogenolysis or Lewis acids, benzylic ethers
represent an ideal option.

Received: January 20, 2021
Published: March 15, 2021

Figure 1. Direct and catalytic enantioselective intermolecular
desymmetrization of prochiral 1,3-diols.
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Activation of diols can be achieved using boron acids, under
basic conditions, by way of a transient tetravalent anionic
complex inducing an increase of the charge and nucleophilicity
of the diol’s oxygen atoms.20 Although great progress has been
made in regioselective monofunctionalization of carbohydrates
using diarylborinic acid catalysts,21 limitations include the
relative instability of borinic acids toward oxidation (typically
they must be handled as ethanolamine adducts) and the
considerable challenge to render this scaffold chiral.22

Compared to borinic acids, boronic acids are generally more
stable to ambient conditions and can be handled without
special precautions.23,24 However, to date very few examples of
chiral boronic acid catalyzed reactions exist, and selectivities
are moderate.25−30 In search of an improved catalyst scaffold,
we were drawn to evaluate cyclic hemiboronic acids. The 9-
hydroxy-9,10-boroxarophenanthrene 1a, a compound first
reported by Dewar in 1959,31 is known to exchange reversibly
with alcohols.32,33 Herein, we report the rational optimization
of a bench-stable chiral boroxarophenanthrene catalyst for the
highly enantioselective desymmetrization of 2-aryl-1,3-diols by
direct mono-O-alkylation using benzylic electrophiles under
operationally simple, ambient conditions (Figure 1C).
At the onset, the capability of 9-hydroxy-9,10-boroxaro-

phenanthrene (1a) to catalyze the functionalization of polyols
was determined through a screen of different hemiboronic
heterocycles.34 The efficiency of 1a was subsequently assessed
in comparison with that of diphenylborinic acid, as the
borinate 4, using a diverse panel of model 1,2- and 1,3-diols
(Table 1). Using conditions reported by Taylor and co-
workers,35 catalytic monobenzylation of simple diols was

achieved in good yields and high selectivities. Remarkably,
using two distinct sets of reaction conditions, catalyst 1a was
found to be superior to borinate 4 in effecting the alkylation of
model 1,3-diol 2a to afford the monobenzylated product 3a in
good yield (entries 5−6). In all cases, poor conversions were
observed in the absence of a catalyst.
By analogy with borinic acid catalysts,21 diol activation by

catalyst 1a is expected to arise through a tetrahedral anionic
boron intermediate that imparts an increase in the oxygen’s
atomic charge. When mixing 1a with equimolar 1,3-diol 2a in
the presence of potassium carbonate, an upfield resonance of
2.8 ppm corresponding to a tetravalent intermediate (5a) can
be observed by 11B NMR spectroscopy, which was
corroborated by ESI HRMS, negative mode (Figure 2A).

The X-ray crystallographic structure of a tetrahedral boron
complex between 1a and neopentyl alcohol was successfully
resolved as the tetrabutyl ammonium salt 6. Close inspection
of its structure reveals a defined six-membered chairlike
conformation in which the aryloxy B−O bond of the
stereogenic boron atom occupies the axial position and the
larger aryl B−C fragment is placed equatorially. Presumably,
once the activated anionic species 5 forms in solution, one of
the bound oxygen atoms is functionalized by the electrophile,
with catalytic turnover arising from exchange of intermediate 7
with another molecule of diol 2 that concomitantly releases the
monofunctionalized product (3) (Figure 2B). Functionaliza-
tion occurs at one of the two alkoxy ligands as opposed to the
less nucleophilic phenoxy ligand, and double alkylation is

Table 1. Comparison of Boroxarophenanthrene 1a and
Borinate 4 in the Benzylation of 1,2- and 1,3-Diolsa

aConditions: 0.20 mmol of polyol, 0.30 mmol BnBr, 10 mol % 4 or
1a, in 1 mL of CH3CN (except entry 6: 0.10 mmol scale). bIsolated
yields. cA single regioisomer was observed. dReaction without catalyst
(NMR yield): entry 5: 7.5% monobenzylated, 3.5% dibenzylated; 15%
monobenzylated, 5.5% dibenzylated. eConditions: BnCl (1.5 equiv),
K2CO3 (1.7 equiv), KI (1.0 equiv) (rr, regioisomer ratio).

Figure 2. (A) Structure of the complex between boroxaro-
phenanthrene 1a and 1,3-diol 2a. (B) Catalytic cycle for
monoalkylation of 2-aryl-1,3-diols 2.
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prevented as two hydroxy groups are required for effective
substrate activation with the catalyst.
Realizing the potential for enantioselective desymmetriza-

tion, we sought to design a chiral variant of catalyst 1a. To this
end, we first evaluated the 1,1′-bi-2-naphthol (BINOL)-
derived axially chiral bis(boroxarophenanthrene) 1b reported
by Hosoya and co-workers (Table 2).36 Utilizing (R)-1b as a

chiral catalyst and model substrate 2a under the mono-
benzylation conditions of Table 1 (entries 5−6), the
desymmetrized product 3a was isolated in good yield with
moderate enantioselectivity (Table 2, entry 1, “conditions A”).
Because it delivered monobenzylated diol 3a with higher
enantioselectivity (entry 2), conditions B (BnCl, K2CO3, KI)
were selected for further optimization of the catalyst.
In consideration of the dimeric structure of catalyst 1b, we

posited that a single boronyl unit may be sufficient to complex
the diol. To test this hypothesis, monohemiboronic acid 1c
was synthesized using a similar sequence starting from (R)-3-
bromo-2,2′-dimethoxy-1,1′-binaphthalene.34 Moreover, ether-
ification of the hydroxy group of 1c with a large group may
provide a catalyst that can differentiate more efficiently the two
diol oxygen atoms bound in the tetravalent boronate complex.
Thus, whereas catalyst 1c and 1d provided the desymmetrized
product with poorer enantioselectivity compared to 1b (Table
2, entries 3−4), the trityl ether of catalyst 1e provides much
greater steric hindrance, and it led to a significantly higher er of
93:7 (entry 5). According to a stereochemical induction model
informed by the above X-ray crystallographic structure of
adduct 6, which assumes a pseudoequatorial 2-aryl group in
the chairlike complex, alkylation of the most accessible oxygen
atom would result in formation of (S)-3a (Figure 3). Indeed,
the (S) absolute stereochemistry of the major enantiomer was
confirmed by the X-ray crystallographic analysis of the 3,5-
dinitrobenzoyl derivative of 3a.34

A final round of optimization was attempted to further
increase the catalyst’s enantioselectivity. Using catalyst 1e,
lowering the temperature, or a switch to other polar solvents
and carbonate bases, provided no improvement.34 Control
experiments suggested that the background reaction is not
competing under these conditions and that the enantioselec-
tivity is truly limited by the structure of the catalyst.34 A crucial
clue for further improving the catalyst’s enantioselectivity
emerged from the 1H NMR analysis of complex 5a, which
showed a second, minor set of resonances likely attributable to
another slow-exchanging conformer.34 As inferred from the
above X-ray crystallographic structure (6, Figure 2A), the
conformer of 5a with a pseudoaxial aryloxy group is expected
to be favored; however, the diol’s phenyl group may be
positioned either pseudoequatorial or pseudoaxial (Figure 4A).
In the absence of H⇔Ph 1,3-diaxial interactions (such as in
phenylcyclohexane), the pseudoaxial conformer II may be very
close in energy relative to the pseudoequatorial conformer I.
As shown with catalyst (R)-1e in Figure 4B, this minor

conformer can cause a significant erosion of the enantiose-
lectivity of the desymmetrization because it is expected to lead,
by alkylation of the least hindered O atom, to the antipode of
product (S)-3a. The four possible conformers of 4 were
minimized computationally using density functional theory
(DFT) calculations (B3LYP/6-31G*). Although the relative
energies of the conformers are to be considered approximate,
the calculations confirmed the large preference for the two
conformers with the pseudoaxial aryloxy group, I and II
(Figure 4A). However, the desired conformer I with the
pseudoequatorial phenyl substituent is only slightly lower in
energy (∼0.5 kJ/mol). It was hypothesized that the addition of
a “methyl blocker” in position 1 of the boroxarophenanthrene
scaffold would cause unfavorable nonbonded interactions in
the minor, undesired conformer II that would help minimize
this conformer and its deleterious effect on the reaction’s
enantioselectivity. Computations evaluating the effect of 1-
methyl substitution are in full agreement with this proposal,
revealing a larger energy difference in favor of conformer I
(Figure 4A, R = Me). These calculations are corroborated by
NMR spectroscopic studies comparing the conformer ratio
between 1a and the methylated derivative 1f (Figure 4C).
Although the minor conformer is still observed with 1f, its

Table 2. Initial Optimization of Alkylation Conditions and
Chiral Catalyst

entry conditionsa catalyst yield (%)b er

1 A 1b 97 80:20
2 B 1b 99 83:17
3 B 1c 62 69:31
4 B 1d 83 79:21
5 B 1e 94 93:7

aConditions: 0.10 mmol of diol 2a in 0.5 mL of CH3CN.
bIsolated

yields.

Figure 3. Stereochemical model for the monobenzylation of 1,3-diol
2a using catalyst (R)-1e.
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proportion is significantly reduced from 1:4 to 1:9. Addition-
ally, due to the additional steric hindrance of a pseudoaxial aryl
group in the approach of the electrophile, it is plausible that
the minor conformer II is intrinsically less reactive. To test the
idea of substrate conformational control, chiral catalyst 1g with
the “methyl blocker” was prepared.34 When compared with
catalyst 1e in the benzylation of diol 2a, the methylated
derivative 1g afforded a reproducible increase of enantiose-
lectivity from 93:7 (cf. Table 2, entry 5) to 95:5 er with both
the (R) (Table 3, entry 1) and (S) catalyst (entry 2). Further
supporting its ability to control the substrate’s conformation,
the methylated catalyst 1g was found to consistently
outperform catalyst 1e when compared with several other
substrates (e.g., 2f: 95:5 vs 92:8; 2g: 95:5 vs 93:7; 2m: 94.5:4.5
vs 91:9).34

The scope of the 2-substituent was examined with the
optimal catalyst (R)-1g. High yields and consistently high
enantioselectivity ratios were obtained for aryl groups

substituted at all positions. For example, all three positional
isomers of tolyl and methoxyphenyl groups provided er’s of
95:5 and over (entries 3−8). Halogenated 2-aryl 1,3-diols are
suitable substrates regardless of the position of the halide
substituent (entries 9−14). Strong electron-withdrawing
substituents like trifluoromethyl and nitro lead to slightly
decreased enantioselectivities (entries 15−16), as are the 2-
heteroaryl substrates (entries 17−18). In contrast, aliphatic
groups such as tert-butyl (entry 20) and benzyl (entry 21) led
to significantly lower er’s. Overall the obtained er’s roughly
parallel substituent A values (e.g., Bn 1.9, Ph 3.0 kcal/mol).
Satisfactorily, high selectivities are maintained when using
other electrophiles like functionalized benzylic chlorides and
even a naphthyl derivative (entries 22−24). Finally, a 2-amino
derivative (entry 25) and a 1,3-disubstituted 1,3-diol34

demonstrate potential toward other substrate classes. Notably,
catalyst 1g is recyclable (cf. entries 8, 12, 15).
In summary, highly enantioselective desymmetrization of 2-

aryl-1,3-propanediols by direct O-alkylation was achieved
under mild ambient conditions using a novel class of chiral
hemiboronic acid organocatalyst derived from BINOL.
Nucleophilic activation and discrimination of the enantiotopic
hydroxy groups on the substrate occurs via a defined, chairlike

Figure 4. Analysis (A) and stereochemical implications (B) of
possible conformations of catalysts 1 complexed with diol 1a. (C)
NMR study of the effect of a “methyl blocker” on the conformational
equilibrium (ax., axial; eq., equatorial).

Table 3. Scope of 2-Substituted 1,3-Diol Substrates with
Catalyst (R)-1ga

entry diol R1 R2 yieldb (%) er

1 2a Ph Ph 90 95:5
2c 2a Ph Ph 95 5:95
3 2b 2-MeC6H4 Ph 86 96:4
4 2c 3-MeC6H4 Ph 90 94.5:5.5
5 2d 4-MeC6H4 Ph 88 95.5:4.5
6 2e 2-MeOC6H4 Ph 84 95.5:4.5
7 2f 3-MeOC6H4 Ph 91 95:5
8d 2g 4-MeOC6H4 Ph 93 95:5
9 2h 2-FC6H4 Ph 95 95:5
10 2i 4-FC6H4 Ph 84 95:5
11 2j 2-ClC6H4 Ph 85 95:5
12d 2k 2-BrC6H4 Ph 76 95:5
13 2l 3-BrC6H4 Ph 81 95:5
14 2m 4-BrC6H4 Ph 88 94.5:5.5
15d 2n 4-CF3C6H4 Ph 73 93.5:6.6
16 2o 4-NO2C6H4 Ph 81 93.5:6.5
17 2p 3-indolyl Ph 81 92.5:7.5
18 2q 3-thienyl Ph 91 94:6
19 2r 1-naphthyl Ph 90 92.5:7.5
20 2s t-Bu Ph 70 92:8
21 2t CH2Ph Ph 89 75:25
22 2a Ph 4-CF3C6H4 87 95.6:4.4
23 2a Ph 4-MeOC6H4 88 94.2:5.8
24 2a Ph 2-naphthyl 74 95.7:4.3
25 2u N-Phthalamido Ph 50 91.8:8.2

aConditions: 0.10 mmol of diol 2 in 0.5 mL of CH3CN.
bIsolated

yields. cWith catalyst (S)-1g, affording product (R)-3a. dWith
recycled catalyst.
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six-membered anionic boronate complex. Catalyst optimiza-
tion featured the judicious addition of a steric blocking group
to help disfavor a poisoning conformer, leading to higher
enantiomeric ratios equal or over 95:5 for a wide range of 2-
aryl/heteroaryl groups embodying various, synthetically useful
substituents. It can be anticipated that the chiral boroxar-
ophenanthrene scaffold will be amenable to further improve-
ments, along with applications with other electrophiles and
transformations.
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