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ABSTRACT: A chiral phosphine oxide-ligated Ni−Al bimetallic catalyst was used to realize an enantioselective C2−H alkylation of
pyridines without the need of a C2-block. A wide range of pyridines, including unsubstituted pyridine, C3, C4, and C2-substituted
pyridines, and even complex pyridine-containing bioactive molecules are well compatible with the reaction, providing up to 81%
yield and up to 97% ee.

Chiral C2-alkylated pyridines are important structural
motifs, widely existing in pharmaceuticals, agrochemicals,

and biologically active natural products, as well as catalysts
(Scheme 1a).1 The development of efficient synthetic methods
to these compounds has received considerable interest in the
past several decades.2−5 Compared with either traditional

methods often requiring prefunctionalized pyridines and
stoichiometric chiral reagents2 or radical-involved Minisci
reactions with the sacrifice of molecular fragments,3 transition
metal-catalyzed C−H alkylation of pyridines with π-unsatu-
rated compounds represents a more attractive alternative
owing to better atom and step economy.4,5 However, due to
the strong coordinative ability of pyridines to metals, which
may inhibit the coordination of chiral ligands to metals, the
development of enantioselective transition metal-catalyzed C−
H alkylation of pyridines has been a formidable challenge, and
successful examples are quite scarce. In 1994, a seminal study
was conducted by Jordan and co-workers, in which a chiral
Cp−Zr complex was used to promote C−H alkylation of 2-
picoline with 1-hexene, achieving 58% ee (Scheme 1b).6 In
2014, an important breakthrough of this field was made by
Hou and co-workers, who used a cationic half-sandwich Sc
complex to furnish C2−H alkylation of 2-substituted pyridines
with various α-olefins, achieving up to 96% ee.7 In 2018,
Mashima and Tsurugi et al. explored C−H aminoalkylation of
2-arylpyridines with imines and found that chiral diamine-
based Y or Lu complex can deliver up to 97% ee.8 Despite big
advances, all transition metal-catalyzed methods require the
use of C2-blocked pyridines to hamper the deleterious
coordination of pyridines to metals, leading to limited product
complexity, as well as incompatibility of a wide range of non-
C2-blocked pyridine-containing bioactive molecules. To
address this challenge, herein we used chiral phosphine oxide
(PO) ligated Ni−Al bimetallic catalyst to facilitate an
enantioselective C2−H alkylation of pyridines with 1,3-
dienes,9 allowing non-C2-blocked pyridines to be enantiose-
lectively alkylated for the first time, providing a series of C2-
alkylated pyridines, including organocatalysts and complex
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Scheme 1. Chiral C2-Alkylated Pyridines and Synthesis
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bioactive molecules, in up to 81% yield and up to 97% ee
(Scheme 1c).

Ni−Al bimetallic catalysts display excellent catalytic
reactivity in a wide range of C−H activations of pyridines
without the need of special modifications of pyridines.10

However, due to the steric repulsion between Al−Lewis acid
and the ligand of Ni, successful C−H alkylation was achieved
only for the C4-position of pyridines with linear selectivity.11

To reverse this selectivity into C2-selectivity with branched
selectivity, we envisioned to use a ligand-ligated Ni−Al bimetal
as a catalyst and 1,3-dienes as alkylating reagents, hoping that
(1) when Al−Lewis acid coordinates to pyridine, the ligand
linker between Ni and Al would play a directing group’s role,
harnessing Ni to preferentially activate the proximate C2−H
bond other than remote C3−H or C4−H bonds; (2) the
insertion of 1,3-dienes with Ni−H species would generate
more stable allylic intermediates, delivering branched-selectiv-
ity products. Following this hypothesis, simple pyridine (1a)
and phenyl 1,3-diene (2a) were selected as model substrates
for the investigation. We systematically examined a broad
range of chiral phosphine oxide ligands that have proved to be
good linkers between Ni and Al (Table 1).12 Chiral taddol (L1
and L2) and BINOL-derived phosphine oxides (L3 and L4)
were ineffective, while diamine-derived phosphine oxides
proved to be suitable ligands.

Except phosphine oxides bearing alkyl groups as side chains
(L5 and L6), various diamine-derived phosphine oxides bearing
bulky aryl groups as side chains in general displayed good to
high reactivity (L7 to L16). However, the enantioselectivity was
highly dependent on the chiral diamine backbone. Compared
with a cyclohexane-diamine backbone bearing mesityl groups
as side chains (8% ee, L7), diphenyl-substituted diamine was a
better option, providing 55% ee (L8). With this backbone,
more sterically hindered aryl groups generally led to higher
reactivity with similar ee (L9 to L12) except for L13. Notably,
when 2-methyl naphthyl group and 3,5-di-tert-butyl group were
incorporated as nonsymmetrical side chains, the phosphine
oxide ligand existed as two separable isomers. Both of the two
isomers were capable of promoting this reaction, providing
similar ee (95% vs 91%) with opposite stereoconfiguration,
while the mixture of them gave only 24% ee (also see Table
S2), suggesting that the chiral P center of these isomers was
critical to the enantioselectivity of the reaction. The optimal
isomer (L15), confirmed by single crystal X-ray diffraction, gave
the desired product in 43% yield with 95% ee. By heating to
135 °C from 120 °C, the yield can be further elevated to 82%
without significant loss of ee. Further modification of N-phenyl
group by introducing an extra methoxy group did not give
better results (L16).

With the optimal ligand in hand, we proceeded to examine
the scope of pyridines (Table 2). A broad range of C3-

Table 1. Ligand Identificationa

aReaction conditions: 1a (0.2 mmol), 2a (0.25 mmol), toluene (1
mL) under N2 for 8 h; yield of isolated products; ee was determined
by chiral HPLC. b135 °C. Mes = mesityl. Ar = 3,5-tBu2C6H3.

Table 2. Scope of Pyridinesa

aReaction conditions: 1a (0.2 mmol), 2 (0.25 mmol), toluene (1 mL)
under N2 for 8 h; yield of isolated products; ee was determined by
chiral HPLC.
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substituents were well compatible with the reaction, selectively
delivering a branched isomer as the sole product. For example,
an alkyl group (3b, 3c, and 3d), alkenyl group (3e), and
(hetero)aryl group (3f and 3g) provided the corresponding
products in 66−80% yield and in 87−96% ee. More electron-
donating groups such as alkoxy group (3h), amino group with
an acyl group (3i and 3j), diaryl amino group (3k), and dialkyl
(3l and 3m) amino group also worked well, affording 58−80%
yield and 91−97% ee, in spite of the fact that the electron-rich
pyridine ring disfavors Ni(0)-catalyzed C−H activation via the
oxidative addition pathway. As expected, electron-withdrawing
groups such as CF3 (3n) and carboxylate groups (3o and 3p)
were tolerated well, offering the desired products in 62−70%
yield and 83−91% ee. However, as an exception, sulfamide-
substituted pyridine gave a little lower yield (48%) and ee
(71%) (3q), probably attributed to the fact that the
coordination of sulfamide with Al−Lewis acid inhibited the
activation of pyridines. Similar to C3-substituents, C4-
substituents such as methyl group (3r) and alkoxy group (3s
and 3t) were also well compatible with the reaction, providing
62−78% yield and 91−96% ee. In comparison with C3- or C4-
substituents, C2-substituents had stronger influence on the
coordination of pyridines with Al−Lewis acid. In general, bulky
C2-substituents gave low yield, but pyridines with less sterically
hindered C2-substitutents still smoothly participated in this
reaction (3u and 3v), affording the corresponding products in
50−62% yields and 93−94% ee. In addition, quinoline (3w)
and quinoxaline (3x) were also tolerated, giving the desired
product in 61% yield with 60% ee and 54% yield with 86% ee,
respectively. However, heterocycles such as bipyridines,
terpyridines, pyridazines, and imidazoles are incompatible,
probably owing to stronger coordination of Al with the
substrates, which inhibited the regeneration of bimetallic
catalyst.

Next, the scope of 1,3-dienes was investigated (Table 3).
With respect to aryl dienes, either various electron-donating
groups such as alkyl groups (4a, 4b, 4c, and 4d), alkenyl group
(4e), aryl group (4f), alkoxy group (4g and 4h), and amino
group (4i), or electron-withdrawing fluoro (4j) and carbox-
amide (4k) at the phenyl ring were all well compatible,
providing the corresponding products in 54−80% yield and
67−96% ee. In addition, 2-furyl dienes (4l) and naphthyl (4m)
were also suitable substrates, giving 68% yield with 92% ee and
52% yield with 91% ee, respectively. Besides monosubstituted
1,3-dienes, disubstituted 1,3-dienes (4n, 4o, 4p, and 4q) were
also compatible with the reaction, delivering 49−55% yield and
79−93% ee. Notably, aryl group in 1,3-dienes proved to be
critical to the branched selectivity. The replacement of aryl
group with alkyl group (4r) or H (1,3-butadiene in the SI)
generated linear isomers as main products. Additionally, diene
structural motif was another key factor to the branched
selectivity. The use of styrene instead of dienes led to a mixture
of branched and linear isomers in a ratio of 1.9:1 and in 96%
total yield (see page S33).

This method provides an efficient tool for the late-stage
modification of non-C2-blocked pyridine-containing complex
bioactive molecules and organocatalysts (Table 4). 4-
(Dimethylamino)pyridine (DMAP) and 4-pyrrolidinopyridine
(PPY) are particularly attractive organocatalysts for nucleo-
philic reactions, while the synthesis of their enantioenriched
chiral counterparts are very challenging, often requiring
lengthy and time-consuming processes.13 In contrast, the
current method allowed a one-step procedure for their

convenient synthesis, providing chiral DMAP (5a) in 68%
yield and 96% ee, and chiral PPY (5b) in 70% yield and 92%
ee. Medicinally relevant compounds were also competent in
this process. For example, the abiraterone (5c), an anticancer
drug, was alkylated at the C2-position of the pyridine motif,
providing the corresponding product in 67% yield with 94:6 dr.
In addition, a range of bioactive molecules, such as menthol
derivative (5d), nicotinic acid-derived complex molecules, such
as (−)-menthol (5e), (−)-borneol (5f), and cholesterol (5g),
as well as steroid hormones estradiol (5h), were also found to
be suitable substrates in this reaction, providing 58−80% yields
and 90:10−95.5:4.5 dr. The absolute configuration of major
enantiomer of the product was determined by single crystal X-
ray diffraction (see the SI).

C2-alkylated pyridines bearing an olefin motif are versatile
synthetic precursors (Scheme 2a). For example, the hydro-
genation of 3a provided chiral pyridine 6 in quantitative yield
without significant loss of ee, and the oxidation of 3a, followed
by a reduction, generated alcohol 7 in 70% yield with the same
ee. To gain more insights into the mechanism, relevant
mechanistic experiments were carried out. Deuterium-labeling
experiment using racemic phosphine oxide ligand (Mes-
DAPO, see the SI) revealed that C2-deuterium of pyridine
was distributed at two positions of the product, including the
methyl group (1.21 D) and the allylic hydrogen (0.27 D). At
the same time, the C5-deuterium was partially replaced by H

Table 3. Scope of 1,3-Dienesa

aReaction conditions: 1 (0.2 mmol), 2a (0.25 mmol), toluene (1 mL)
under N2 for 8 h; yield of isolated products; ee was determined by
chiral HPLC. bNi(cod)2 (20 mol %), L15 (20 mol %), AlMe3 (60 mol
%). cb:l = branched:linear.
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(0.48 H) (Scheme 2b). These results suggested that the
formation of allyl-Ni species was a reversible process, which
would lead to a scramble of C5-deuterium and methyl H. In
addition, no significant kinetic isotopic effect was observed in
parallel experiments (kH/kD = 1.04) (Scheme 2c), indicating
that the cleavage of C2−H would not be involved in the rate-
determining step. Beyond these experiments, stoichiometric
experiments were also conducted, including preparing
bimetallic catalyst by using readily available Mes-DAPO
instead of chiral ligand L15 (see page S36 in the SI), achieving
the complex of the catalyst with pyridine and investigating its
reactivity, which further confirmed that PO−Ni−Al complex
could be a vital catalyst. Density functional theory calculations
were also performed (Scheme 2d and see the SI for details)
and the computations showed that (1) C2−H activation
proceeds via a reversible ligand-to-ligand H transfer pathway
((R)-TS1), which is accordance with the observed scramble of
C5-deuterium and kinetic isotopic effect;14 (2) subsequent
isomerization of η1 to η3 allylic nickel complex leads to
intermediate IM4, which undergoes reductive elimination to
generate product 3a; (3) the reductive elimination step is the
turnover-limiting step with an overall energy barrier of 30.2
kcal/mol ((R)-TS3 relative to (R)-IM4); (4) the computed
energy difference between the pathways leading to two
stereoisomers is 2.7 kcal/mol, which is also in accordance
with the observed 94% ee value; (5) the enantioselectivity is
mainly caused by the C−C reductive elimination of the S-
pathway being much higher in energy than that of the R-
pathway. In favorable (R)-TS3, the C−H−π interaction
between the phenyl group of the allylic moiety and the N-
phenyl group of the ligand was observed, while the steric

repulsion between the allylic moiety and Ni−Al catalyst was
found (S)-TS3. These two factors would result in the
experimentally observed enantioselectivity (Scheme 2e). In
addition, DFT calculations also exclude C3- or C4−H
activation of pyridine, and site-selectivity of 1,3-dienes.

In summary, we have developed an enantioselective Ni-
catalyzed C2−H alkylation of pyridines without the need of a

Table 4. C2-Alkylation of Pyridine-Containing
Organocatalysts and Bioactive Moleculesa

aReaction conditions: 1 (0.2 mmol), 2a (0.25 mmol), toluene (1 mL)
under N2 for 8 h; yield of isolated products; ee and dr were
determined by chiral HPLC.

Scheme 2. Synthetic Utility and Mechanistic Experiments
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C2-block, providing a series of chiral pyridine derivatives in
54−81% yield and 60−97% ee. This method enables efficient
C2-alkylation of a wide range of general pyridines, including
unsubstituted pyridine, C3, C4, or C2-substituted pyridines,
and even complex pyridine-containing bioactive molecules.
The olefin motif in products allows versatile elaborations,
providing rapid and convenient access to various chiral
pyridine derivatives. The phosphine oxide-ligated Ni−Al
bimetallic catalyst proves to be critical in improving the
reactivity and controlling the selectivity. The search for wider
applications of this bimetallic catalyst is underway in the lab.
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