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ABSTRACT: The selectivity of SmI2 as a one electron-reductant motivates the development of methods for reductive Sm-catalysis.
Photochemical methods for SmI2 regeneration are desired for catalytic transformations. In particular, returning SmIII-alkoxides to
SmII is a crucial step for Sm-turnover in many potential applications. To this end, photochemical conditions for reduction of both
SmI3 and a model SmIII-alkoxide to SmI2(THF)n are described here. The Hantzsch ester can serve either as a direct photoreductant
or as the reductive quencher for an Ir-based photoredox catalyst. In contrast to previous SmIII reduction methodologies, no Lewis
acidic additives or byproducts are involved, facilitating selective ligand coordination to Sm. Accordingly, SmII species can be
generated photochemically from SmI3 in the presence of protic, chiral, and/or Lewis basic additives. Both the photoreductant and
photoredox methods for SmI2 generation translate to intermolecular ketone-acrylate coupling as a proof-of-concept demonstration of
a photodriven, Sm-catalyzed reductive cross-coupling reaction.

Samarium diiodide (SmI2) is an exceptionally versatile
single-electron reductant. The large and labile coordina-

tion sphere of SmII can recruit one or multiple substrates and
additives to achieve selectivity in both organic synthesis and
small-molecule reductions (Figure 1A).1−4 However, SmI2 is
employed stoichiometrically in all but a few select cases5−8

because its reactions typically terminate in the formation of
highly stable SmIII−alkoxide species. Catalytic regeneration of
the SmII state requires abstraction of OR− by a stoichiometric
oxophile (EX) to generate a SmIII species that can be reduced
by a relatively mild reductant (Figure 1A). The difficulty
associated with this transformation has been cited as a
motivation for the development of a variety of alternative
photo- and electrochemically driven methods for ketyl radical
generation.9−13

Early strategies for reductive Sm catalysis relied on harsh
combinations of halosilane oxophiles (R3SiX) and low valent
metals (Mg0 for X = Cl; Zn0 for X = I) or an applied
electrochemical potential as the reductant.14−22 In a collabo-
rative effort with the Reisman laboratory, we recently disclosed
comparatively mild silane-free thermal and electrochemical
conditions for catalytic turnover of SmI2 in reductive coupling
of ketones and acrylates through combination of cationic
Brønsted acids with either Zn0 or an applied potential of −1.55
V vs Fc+/0 (Fc+/0 = ferrocenium/ferrocene; all potentials
referenced to Fc+/0).23

Given the growing interest in (metalla)photoredox catal-
ysis,24 photodriven strategies for LnIII/II catalysis remain
surprisingly underexplored.25,26 In a strategy recently show-
cased by the groups of Borbas27 and Nemoto,28 photo-
sensitizers are incorporated into the secondary coordination
spheres of LnIII complexes (Ln = Sm, Eu; Figure 1B).
Intramolecular oxidative quenching of the excited sensitizer by
the LnIII center produces a potent LnII reductant which can
carry out a variety of transformations.

While this and other strategies show promise,25−28 the
chelating ligand platforms used thus far in photodriven LnIII/II

catalysis (cryptands, bidentate phosphine oxides) restrict the
coordination sphere and/or shift E°(LnIII/II) to strongly
negative potentials, belying direct translation to the rich
stoichiometric chemistry of SmI2(L)n as an inner sphere
reductant (L = solvent molecule, typically THF).

Lewis acidic metal ions are commonly used to template
substrates in photodriven reductive coupling reactions.10,29,30

Recently, in contrast to the use of photocatalysts, several Lewis
acid-mediated photoreductions utilize the blue-light absorbing
Hantzsch ester (HEH2) as a photoreductant (E(HEH2

+•/
*HEH2) = −2.5 V).31−34 Photoexcited HEH2 (*HEH2) carries
out CrIII reduction in a catalytic-in-Cr photodriven Nozaki−
Hiyama−Kishi reaction (Figure 1C).35 Alternatively, HEH2
acts as a photoreductant in a Gd(OTf)3-mediated Giese
addition of an N-hydroxyphthalimide (NHPI) ester-derived
alkyl radical into α,β-unsaturated ketones or a lactone (Figure
1C).36 In the latter study, an interaction between Gd and
HEH2 is observed, but GdIII reduction to GdII is not accessible
even by *HEH2.

23

Based on these precedents we noted that *HEH2 should be
capable of reducing SmIII-species such as SmI3 (E°(SmI3/
(SmI2 + I−)) = −1.58 V; Figure S35). Because Sm and Gd are
similar in size and oxophilicity, we envisioned that photo-
excitation of HEH2 bound to SmIII could result in intra-
molecular oxidative quenching to produce SmII (Figure 1D).
Crucially, however, a more dynamic Sm-chromophore
interaction might allow access to coordinatively unsaturated
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SmI2(L)n species which could carry out inner-sphere reduction
in a photodriven Sm-catalyzed cross-coupling reaction.
Importantly, both HEH2 and its 2H+/2e− oxidized congener,
HE, are weak bases and are therefore compatible with the
acidic conditions necessary for recovery of inactive SmIII−OR
species by protonolysis.

Gratifyingly, HEH2 proved competent as a photoreductant
for SmIII-to-SmII conversion. Monitoring the UV−visible
absorption spectrum of a solution of SmI3 (2 mM), HEH2
(60 mM) and 2,6-lutidine base (Lut, 60 mM) following
irradiation at 440 nm for 5 min in THF reveals the
characteristic profile of blue SmI2(THF)n with λmax at 555
and 618 nm (Figure 2A, left panel). Extended irradiation (120
min) results in increasing SmI2 generation, with maximum

yield ∼25%. Interestingly, in the absence of base this reaction
does not proceed (Figure S17), likely due to rapid back-
electron transfer (BET) between HEH2

•+ and SmI2. However,
HEH2

•+ can be deprotonated in the presence of base,
circumventing BET.

We next evaluated conditions for photogeneration of
SmI2(THF)n from Sm(OiPr)3 as a model SmIII-alkoxide.
Irradiation of Sm(OiPr)3 (2 mM), tetra-n-heptylammonium
iodide (nHep4NI, 6 mM), and HEH2 (60 mM) at 440 nm in
THF shows no evidence of SmI2 formation (Figure S19).
However, upon the addition of only 1.5 equiv of the acid bis-
trifluoromethylsulfonylimide (HTFSI) to Sm(O iPr)3,
SmI2(THF)n is generated upon irradiation with nHep4NI and
HEH2 (Figure 2A, right panel). Parallel CV studies
demonstrate that no SmI3 is generated from Sm(OiPr)3 at
this acid loading (Figure 2B, compare light and dark blue
traces), and current attributable to SmIII reduction (presum-
ably of an intermediate mixture of solvated “SmI(OiPr)2” and
“SmI2OiPr”) does not onset until −2.3 V. In contrast to SmI3,
no external base is needed, suggesting that the Sm-bound
alkoxide might additionally serve the role of deprotonating
HEH2

•+ to avoid BET. UV−vis studies reveal that addition of
the colorless SmIII−OiPr species (gray trace in Figure 2A) gives
rise to a significantly red-shifted shoulder in the HEH2
absorption profile (compare light and dark red traces in
Figure 2A), consistent with preassociation.

The modest yields and rates of these reactions motivated the
study of SmIII reduction with a photoredox catalyst to

Figure 1. Summary of key challenges for Sm-turnover; prior studies
exploiting LnIII/II photochemistry and photoreductions with HEH2
and Lewis acidic metals; and this work describing photodriven
generation of SmI2.

Figure 2. (A) UV−vis spectra following photoreduction of SmI3 (left)
and SmI2(OiPr)(L)n to form SmI2. CVs of Sm(OiPr)3 (2 mM) in the
presence of iodide and proton sources in THF.
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overcome the low quantum yield and excited state lifetime
(220 ps in MeCN)37 of HEH2.

We selected [Ir(dtbbpy)(ppy)2]+ ([IrIII]+)38 as a photo-
sensitizer, which could undergo reductive quenching by a
sacrificial electron donor to generate IrII. IrII is thermodynami-
cally capable of reducing SmI3 to SmI2 (E°(IrIII/II) = −1.94 V,
Figure 2B and Figure S36).

Irradiating SmI3 or SmI2OiPr (2 mM) with [IrIII]PF6 (0.2
mM), HEH2 (60 mM) as sacrificial reductant, and Lut (60
mM) rapidly generates SmI2 (80% or 30% conversion in 2 min,
Figure 3A). Again, the weak base Lut enhances the process
(Figures S20−S21).

The accelerated reduction of SmI2OiPr is curious, as
electron transfer from IrII to this SmIII species is uphill by
400 mV (Figure 2B). A rationale for these observations is
provided in Figure 3B: reductive quenching of *[IrIII]+ by
HEH2 generates not only the strong reductant IrII, but also the
strong acid HEH2

•+ (pKa − 1 in MeCN),39,40 the combination
of which can carry out net proton-coupled electron transfer to
SmIII−OiPr.41 Proton transfer from HEH2

•+ to a SmIII−OiPr
species, likely via proton relay mediated by Lut, liberates
iPrOH and [SmI2]+.

42 The latter can then be reduced to SmI2
by IrII.

Development of Sm-catalysis leveraging diverse ligand
coordination to modulate reactivity is an attractive goal.
Exploration of SmII generation in the presence of potential
coligands was carried out pursuant to these interests.

Satisfyingly, SmII is readily photogenerated from SmI3 by
[IrIII]+ and quencher (HEH2 or Et3N) in the presence of
several protic additives (ethylene glycol, N,N-dimethylaminoe-
thanol, Figures S23−S24),3,43−45 including a chiral aminediol
(Figure 4A, Figure S25) that has been utilized in several
enantioselective SmI2 transformations.46−48

The reduction potential and reactivity of SmII is highly
sensitive to coordination of Lewis-basic additives (HMPA, Br−;
Figure 4A).49 While [IrII] is insufficiently reducing to access
such species, the more reducing photocatalyst 3DPA2FBN,50

when paired with the more reducing quencher 9,10-
dihydroacridine and Et3N as base, mediates generation of
both SmBr2 and Sm(HMPA)42+ (Figure 4B). 3DPA2FBN also

facilitates SmIII reduction and binding to the chiral BINAPO
ligand (Figures 4A and S34).51,52

Having established two different photochemical approaches
to SmII generation, we targeted an intermolecular ketone-
acrylate coupling as a model reaction to benchmark photo-
driven Sm-catalysis (Table 1). This reaction is representative
of the qualities that set SmI2 apart as a stoichiometric
reductant. Inner-sphere electron transfer to one or both of the
carbonyl substrates is obligatory based on comparison of outer-
sphere reduction potentials.23 Importantly, a Sm-alkoxide is
generated as the byproduct of lactonization, enabling
evaluation of the ability of a set of conditions to overcome
this critical barrier to generalizable Sm catalysis.

Irradiation of ketone 1 (0.04 mmol), phenyl acrylate (2
equiv), and SmI2(THF)2 (10 mol %) in the presence of HEH2
(4.0 equiv) in 2-MeTHF (0.02 M) at 440 nm for 90 min yields
lactone 2 in 76% yield (Table 1, entry 1, method A). Addition
of a photoredox catalyst ([Ir]PF6, 1 mol %) with pyridine (2
equiv) results in an increase in yield to 89% (entry 1, method
B). Light and Sm were required for catalytic formation of 2 by
either method (entries 3 and 4). Sm(OTf)3 is a competent
precatalyst with 50 mol % MgI2 included as an iodide source
(entry 4). Substitution of Gd(OTf)3 for Sm(OTf)3 results in
trace product formation, supporting a key role for SmII in
catalysis (entry 5).

Figure 3. (A) Photoreductions of SmIII species with [Ir]PF6
photocatalyst. (B) Rationale for net photoinduced proton- and
electron-transfer from HEH2 to [SmIII−OR] species.

Figure 4. (A) Ligand coordinated Sm-species generated by a
photoredox approach. See SI for relevant electrochemical data.
Choice of a sufficiently reducing photocatalyst remains crucial to
observe SmII. (B) UV−vis spectra following photogeneration of
SmBr2 and Sm(HMPA)42+.
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Both methods are competent in the presence/absence of
pyridine (entries 1, 6, and 7), but yields are greatly diminished
in the presence of a stronger base (Et3N, entry 8). This
suggests that the dynamics of Sm-alkoxide protonation play an
important role in turnover.23 Interestingly, the use of a
dihydropyridine without carbonyl groups, 5,6-dihydrophenan-
thridine, only shows product formation with [Ir]+ (entry 9). In
the absence of Ir, the specific interaction between Sm and
HEH2 appears to be required. The Ir-catalyzed reaction is also
faster, achieving 60% conversion in 15 min, compared to 29%
by method A (entry 10).

Methods A and B were tested against alternative coupling
partners to assess their relative efficacies. When using less
activated substrate pairs (aliphatic ketones and alkyl acrylates,
entries 1, 11 and 12), method B is favored, perhaps because
these slower cross-couplings require rapid SmIII-to-SmII

conversion. Method A is preferred when using aryl ketones
(entries 13−15), as method B gives considerable pinacol-
coupled side-products (Table S3). With method A, selective
inner-sphere photogeneration of SmII by SmIII−HEH2 may
favor SmII-mediated cross-coupling, while with method B
background Ir-mediated substrate reduction to homocoupled
products can dominate.

A proposed mechanism for this photodriven lactonization
reaction (by method A) is presented in Figure 5. The
mechanism can be divided into two parts, a photoreduction
side in which SmIII is reduced to SmII, and a SmI2 cross-
coupling side where the organic substrates are coupled.
Starting from SmI2(OPh), coordination to HEH2 (as

demonstrated in Figure 2A) followed by excitation to
*HEH2 allows for the proton and electron transfer required
to generate SmI2, with PhOH and HEH• as additional
products. Subsequently, SmI2 couples the acrylate and ketone
to form a radical intermediate.53,54 HEH• is capable of
reducing this intermediate as a potent H atom donor, although
alternative schemes for reduction of the radical intermediate
can be envisioned (Figure S45). Following reduction and
lactonization, 2 is formed along with SmI2(OPh).

With [Ir]+, a similar mechanism is proposed, differing in the
regeneration of SmII, which can be regenerated from SmIII-
alkoxide as depicted in Figure 3B (see Figure S46 for full
scheme).

In summary, we have demonstrated photodriven generation
of SmI2(THF)2 from SmIII precursors using both a photo-
reductant and a photoredox catalyst. These conditions
translate to proof-of-concept photodriven reductive Sm-
catalyzed ketone-acrylate coupling. Distinct from reported
methods, photodriven Sm-catalysis occurs in the absence of
competing Lewis-acidic metal additives and byproducts (e.g.,
Mg2+ and Zn2+ salts),14−23 which may be of utility in
development of Sm-catalysis with ligands.3,18,43,46−51 These
findings are anticipated to facilitate applications of Sm-catalysis
beyond the types of thermally driven transformations studied
thus far.
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