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ABSTRACT: Chemodivergent synthesis has been achieved in
asymmetric photocatalysis. Under a dual catalyst system consisting
of a chiral phosphoric acid and DPZ as a photosensitizer, different
inorganic bases enabled the formation of two sets of valuable
products from the three-component radical tandem transforma-
tions of 2-bromo-1-arylenthan-1-ones, styrenes, and quinoxalin-
2(1H)-ones. The key to success was the distinct pKa environment,
in which the radicals that formed on the quinoxalin-2(1H)-one
rings after two radical addition processes underwent either single-
electron oxidation or single-electron reduction. In addition, this
work represents the first use of quinoxalin-2(1H)-ones in
asymmetric photoredox catalysis.

■ INTRODUCTION
Controlling the chemoselectivity during the generation of
distinct products from the same set of starting substrates can
effectively improve molecular diversity and is thus a very useful
tool for drug discovery.1,2 As such, the development of
chemodivergent synthesis has attracted extensive interest from
chemists over the past few decades.1,2 Several elegant examples2

of visible-light-driven photocatalysis3 have been established,
although radical species can readily undergo diverse trans-
formations in the reaction system, usually resulting in the loss of
chemoselectivity. Central to success is the elaborate modulation
of reaction parameters, such as photosensitizers, media,
temperature, and additives, suggesting that distinct chemo-
selective events are sensitive to the reaction conditions.2 Under
such a specific environment and owing to the high reactivity of
radicals, it is difficult for chiral catalysts to achieve sufficient
enantiocontrol of the formation of stereocenters.
In recent years, the prominent synthetic capacity of

photocatalysis has inspired us to develop enantioselective
reactions by combining asymmetric organocatalysis with this
sustainable tool of radical chemistry.4 Based on the accumu-
lation of these studies, we anticipated challenging chemo-
divergent photocatalytic asymmetric synthesis, a task with great
importance in radical chemistry and the pharmaceutical
industry. Herein, we report the first realization of this synthesis;
when using a dual catalyst system5 involving DPZ as a
photosensitizer and a chiral phosphoric acid (CPA), the
three-component transformations of 2-bromo-1-arylenthan-1-
ones, styrenes, and quinoxalin-2(1H)-ones can efficiently result
in two different radical-based pathways, with an inorganic base

as a chemoselective switch (Scheme 1). A wide variety of
quinoxalin-2(1H)-one derivatives bearing α-tertiary stereo-
centers and dihydroquinoxalin-2-one-based bicyclic variants
featuring two adjacent tertiary stereocenters, both of which are
prevalent in pharmaceutically important molecules (e.g.,
molecules I−IV),6,7 were obtained in high yields with good to
excellent enantio- and diastereoselectivities. Preliminary studies
suggested that different pKa environments effectively induced
the radicals that formed on the quinoxalin-2(1H)-ones after the
second radical addition to undergo either single-electron
oxidation (i.e., Minisci-type reaction) or single-electron
reduction. In the latter event, the bromide anion (Br−) released
from ketones was determined to be the crucial reductant,
enabling the successful synthesis of the bicyclic products in the
absence of an external reductant.
Because of their extensive range of biological and

pharmacological activities,6,8 considerable efforts9,10 have been
devoted to developing methodologies for constructing quinox-
alin-2(1H)-one derivatives. Due to the readily accessible
feedstocks and mild reaction conditions, photocatalysis has
been widely used to devise various direct C3−H functionaliza-
tion strategies based on radical addition.10 Notably, the
enantioselective manifolds remain unmet, although other
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azaarenes such as pyridines and quinolines have been
successfully extended to asymmetric Minisci-type reactions.11

We speculated that such a dilemma might originate from the
high reactivity since no extra acid is required to induce
transformation in many cases.10 Accordingly, the effective
inhibition of the racemic background reaction is critical for
chiral Brønsted acid catalysts to provide sufficient enantiocon-
trol. In addition, the current asymmetric Minisci-type reactions
via noncovalent-bonding catalysis are limited to assembling α-
amino and α-hydroxy radicals onto azaarenes,11a−f indicating
the significance of the acidic proton on the radical species as a
hydrogen-bond donor to the precise enantiofacial control of
chiral Brønsted acid−base catalysts.

■ RESULTS AND DISCUSSION
Asymmetric three-component reactions of quinoxalin-2(1H)-
ones10g−i,12 using styrenes to engage in radical relays have
become our preferred research target given the attractive
bioactivities of the resultant products6 (e.g., molecules I and II,
Scheme 1). Moreover, the synthetic versatility of ketones led us
to evaluate the unprecedented 2-bromo-1-arylenthan-1-ones as
radical precursors. Accordingly, the study was begun by
selecting 2-bromoacetophenone (1a), styrene (2a), and 1-
methylquinoxalin-2(1H)-one (3a) as model substrates (Tables
1 and S1 in the Supporting Information (SI)). To test the
feasibility of this process, the transformation was first carried out
using 1.0 mol % DPZ in CH2Cl2 as the solvent at 25 °C and
irradiated by a 3 W blue light-emitting diode (LED) (entry 1,
Table S1). The desired product 4a was obtained in 81% yield
after 24 h. Although the result suggested that a strong racemic
background reaction would occur in the enantioselective
manifold, we still conducted a systematic investigation by
probing diverse chiral CPAs and other parameters (Table S1).
To our delight, the reaction conducted in CH2Cl2 at −50 °C

for 96 h using 1.0 mol % DPZ, 10 mol % SPINOL-CPA (C1),
and 3.0 equiv of Na3PO4 afforded the chiral product 4a in 68%
yield with 93% ee (entry 1, Table 1). The control experiments

revealed that the enantioselectivity is sensitive to the
substituents at the 6,6′-positions of SPINOL (entries 2−3).
Other feasible photosensitizers, such as 3DPAFIPN and
[Ru(bpy)3](PF6)2, were also evaluated, but both the yield and
ee of 4a decreased (entries 4−5). The transformation was then
tested without Na3PO4 (entry 6). As a result, 4a was obtained in
only 21% yield with 86% ee, and the dihydroquinoxalin-2-one-
based bicyclic compound 5a was determined to be the major
product (31% yield, 83% ee, 7.7:1 dr). In the absence of the

Scheme 1. Outline of This Work

Table 1. Optimization of the Reaction Conditionsa

entry alteration to conditions yield (%)b ee (%)c

1 none 68 93
2 C2 instead of C1 66 −77
3 C3 instead of C1 56 −33
4 3DPAFIPN instead of DPZ 50 86
5 [Ru(bpy)3](PF6)2 instead of DPZ 41 90
6d no Na3PO4 21 83
7 no C1 5 n.a.
8 no DPZ n.r. n.a.
9 no light n.r. n.a.
10 under air n.r. n.a.

aReaction conditions: 1a (0.10 mmol), 2a (0.20 mmol), 3a (0.10
mmol), DPZ (1.0 × 10−3 mmol), C1 (0.01 mmol), and Na3PO4 (0.3
mmol) in degassed DCM (3.0 mL) and at −60 °C. bYield of isolated
product. cee was determined by HPLC analysis. d5a was obtained in
31% yield, 83% ee, and 7.7:1 dr. N.R., no reaction. N.A., not available.
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chiral catalyst C1, almost no product was detected, revealing
that low temperatures could suppress the undesirable racemic
background reaction, leading to the successful enantiocontrol of

the chiral catalyst to the formation of the new C(sp2)−C(sp3)
bond (entry 7). Subsequent experiments evaluating other
reaction elements revealed that DPZ, visible light, and an

Table 2. Scope of Accessing Enantioenriched 3-Functionalized Quinoxalin-2(1H)-onesa,b,c,d,e,f,g,h

aReaction conditions: 1 (0.10 mmol), 2 (0.20 mmol), 3 (0.10 mmol), DPZ (1.0 mol %), C1 (10 mol %), Na3PO4 (0.3 mmol), CH2Cl2 (3.0 mL),
−60 °C, 3 W blue LED (2 cm), argon. b2 × 3 W blue LED (4 cm). cCH2Cl2/C6H5F = 1:1 (3.0 mL). dCH2Cl2/C6H5CF3 = 1:1 (3.0 mL). eCH2Cl2/
C6H5F = 1:1 (3.0 mL), K2HPO4 (2.0 equiv) instead of Na3PO4.

f3DPAFIPN instead of DPZ, NaHCO3 (2.0 equiv) instead of Na3PO4, 25 °C.
g3DPAFIPN instead of DPZ, NaHCO3 (2.0 equiv) instead of Na3PO4, −20 °C. hC3 instead of C1, Na2HPO4 (3.0 equiv) instead of Na3PO4.
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oxygen-free environment are indispensable to the trans-
formation occurring (entries 8−10).
With the optimized conditions in hand, we commenced to

explore the scope of this asymmetric three-component Minisci-
type reaction (Table 2). A series of 2-bromo-1-arylenthan-1-
ones (1) with diverse electron-withdrawing and electron-
donating groups on the distinct positions of aromatic rings
were first attempted to react with 2a and 3a. It was found that
products 4b−j were obtained in 51−67% yields with 88−92%
ee. The excellent enantioselectivities attained with the fused
aromatic (4k) and heteroaromatic (4l−m) rings as the ketone
substituents underscore the versatility of the catalytic system.
Moreover, other useful functional groups, such as tosyl (4n),
cyano (4o), and ester (4p) groups, could be readily introduced
onto such an important molecular scaffold by using the
corresponding bromides 1. 2-Bromo-1,3-diphenylpropane-1,3-
dione rendered product 4q with 79% ee, but the poor reactivity
led to only 18% yield. Such a dilemma made it infeasible to
lower the temperature for 3-bromo-1,1,1-trifluoropropan-2-one,
and the adduct 4r was obtained in 64% yield with 34% ee when

the transformation was performed at 25 °C. It was found that 4s
as the amide derivative was also synthesized with a moderate
yield and ee. The transformations of styrenes 2 with 1a and 3a
were then carried out, leading to products 4t−zd with 20−68%
yields and 59−96% ee. Quinoxalin-2(1H)-ones featuring
different substituents on the aromatic rings were subsequently
evaluated, and good compatibility was demonstrated, with
products 4zf−zm obtained in 51−79% yields with 86−95% ee.
The broad substrate scope of the method was further
investigated by using pyrazinols instead of quinoxalin-2(1H)-
ones, and the representative product 4zn was obtained in 52%
yield with 86% ee. It is worth mentioning that the product yields
are mainly affected by the reactivity, and the chemoselectivity is
excellent in most cases.
The generation of 5a in the absence of Na3PO4 (footnote d)

prompted us to explore the possibility of improving the yield
and ee, given the biological importance of such a molecular
scaffold (e.g., molecules III, IV), the lack of an asymmetric
synthetic method, and the significance of verifying the viability
of chemodivergent synthesis for asymmetric photocatalysis.

Table 3. Scope of Accessing Enantioenriched Bicyclic Compoundsa,b,c

aReaction conditions: 1 (0.10 mmol), 2 (0.3 mmol), 3 (0.13 mmol), DPZ (1.0 mol %), C1 (10 mol %), Na2HPO4 (0.2 mmol), 3 Å MS (10 mg),
CH2Cl2 (3.0 mL), −60 °C, 3 W blue LED (2 cm), argon. Unless otherwise noted, dr > 19:1 determined by crude 1H NMR analysis. bNaH2PO4
instead of Na2HPO4 was used, 3 W blue LED (0.5 cm). cdr = 10:1.
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Gratifyingly, our persistent efforts toward investigating reaction
conditions yielded satisfactory results. As depicted in Table 3,
when using Na2HPO4 in place of Na3PO4 and a 3 Å molecular
sieve (MS) as an additive, the transformations under the

standard reaction conditions (Table 1) afforded an array of
bicyclic compounds 5a−x in 47−63% yields with 82−99% ee
and 10:1 to >19:1 dr. Notably, all products were determined to
be the major products in the reaction systems, and the moderate

Scheme 2. Synthesis of Enantioenriched II

Figure 1. Mechanistic studies. (A) Determination of side products. (B) Free energy profile for the two pathways for the generation of Minisci-type
(4a) and bicyclic (5a) products.
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yields were mainly ascribed to the competitive reaction of
quinoxalin-2(1H)-ones with the radical intermediates generated
from the addition of the bromine radical (Br•) to olefins (vide
infra).
Although the two sets of products are potentially bioactive,

synthesizing known important molecules from them can further
disclose the synthetic practicability of the current method. To
this end, Minisci-type reaction adduct 4a was selected to first
undergo reduction by using NaBH4 (Scheme 2). Alcohol 6 was
obtained in 99% yield, and it could be converted to olefin 8 in
65% yield under the reaction conditions used for Barton
deoxygenation. Subsequently, treatment of 8 with H2 and Pd/C
produced molecule II, which is a protein receptor tyrosine
kinase inhibitor, in 98% yield with 90% ee.
To study the mechanisms of the two chemodivergent

transformations, a series of experiments were carried out.
First, Stern−Volmer experiments with an excitation wavelength
of 448 nm were performed,13 and no measurable luminescence
quenching of the photoexcited DPZ (*DPZ) was observed by
2-bromoacetophenone (1a), styrene (2a), or 1-methylquinox-
alin-2(1H)-one (3a). These results are similar to those of many
previous reports on photoredox catalytic Minisci-type reactions
via reductive quenching.10i,j,11a−d On the other hand, in the
transformation of forming 5i, we noted that 9i as a major side
product could be obtained in 28% yield with 78% ee, suggesting
that Br• was formed in the reaction system (Figure 1A).14 As
such, the corresponding Stern−Volmer experiment was
performed, which verified the capacity of *DPZ to oxidize
Br−. In addition, the production of 9i reveals radicals 10 as
another viable electron source. Notably, the linear correlation
between the ee of C1 and the ee of products 4 or 5 suggests that
only a single molecule of the chiral catalyst was involved in the
new bond-forming process. Furthermore, 78% ee of 9i could
support the indispensability of hydrogen-bonding interactions
between CPA and quinoxalin-2-ones.
With these experimental results as a guide, we subsequently

performed density functional theory (DFT) calculations.13 As a
result, the reaction starts with the generation of radical 11a from
bromides 1a through the single-electron reduction by the
resultant DPZ•− (Figure 1B). Then, 11a undergoes addition to
styrenes 2a through the transition state TS1 (ΔG = 8.1 kcal/
mol), providing α-aryl radicals 12a, which then adds to the

complex CPA-3a through TS2 with a low barrier of 1.5 kcal/
mol. In the more basic condition (i.e., using Na3PO4), the
resulting radical 13a can experience hydrogen atom abstraction
by the bromine radical to form the Minisic product 4a and
release the forming HBr and catalyst CPA. The barrier for this
HAT process through I-TS3 is 13.6 kcal/mol, which is 8.7 and
4.5 kcal/mol lower than those of the single-electron oxidation
and reduction of radical 13a, respectively (Figure S14). Hence,
Minisic product 4a is obtained as the major product.
On the other hand, inspired by MacMillan’s study,15 we

explored whether the barrier of the single-electron reduction of
13a could be reduced by recruiting a proton in the presence of
Na2HPO4 and the small amount of HBr generated along with
the side products, such as 9i. Indeed, the single-electron
reduction of the protonated II-14a by DPZ•− leading to the
neutral intermediate II-15a is preferred over the hydrogen atom
abstraction process (I-TS3) and is exergonic by 47.4 kcal/mol.
Subsequently, a more stable conformation II-16a displaying
double H-bonding interactions (N−H···O and additional O−
H···O interactions) could be transformed from II-15a.
Intermediate II-16a then proceeds through a concerted proton
transfer/cyclization transition state II-TS4 to form bicyclic
alcohols II-17a with an energy barrier of 6.0 kcal/mol. Finally,
the dehydration of II-17a with the aid of Na2HPO4 leads to the
bicyclic products 5a. Therefore, in the less basic condition in the
presence of Na2HPO4, radical 13a could be promoted to form
the radical cation II-14a, and the barrier of the single-electron
reduction could be further reduced, resulting in bicyclic
products 5a.
From the above, plausible mechanisms on this chemo-

divergent enantioselective three-component reaction are
proposed and summarized in Figure 2. With respect to the
transformations of yielding products 4, photoredox catalysis
should be triggered from the single-electron oxidation of the
bromine anion (Br−) by *DPZ. The resultant DPZ•− (Ered

1/2 =
−1.07 V versus the saturated calomel electrode (SCE) in
CH3CN) subsequently reduced bromides 1 (e.g., 1a: Ep/2 =
−0.81 V versus SCE in CH3CN) to complete the catalytic cycle
of DPZ and produced radicals 11. After addition of 11 to
styrenes 2, α-aryl radicals 12 were generated, which could attack
the 3-position of quinoxalin-2-ones 3 upon activation of the
crucial CPA C1 (entry 7, Table 1), resulting in intermediates

Figure 2. Proposed mechanism.
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13. Subsequently, 13 are prone to generating products 4
through the hydrogen atom abstraction by the bromine radical
rather than the sequential single-electron oxidation and
deprotonation. On the other hand, 13 are also the key
intermediates for the formation of bicyclic products 5. The
DFT calculation results support that Na2HPO4, as a weaker
inorganic base than Na3PO4, may lead to forming a protonated
radical 14 and allow it to preferentially undergo single-electron
reduction, finally resulting in 5.

■ CONCLUSIONS
In summary, we have demonstrated the viability of chemo-
divergent photocatalytic asymmetric synthesis. As a paradigm,
the three-component transformations of 2-bromo-1-arylenthan-
1-ones, styrenes, and quinoxalin-2(1H)-ones could afford two
series of valuable products with high yields and ee values in the
presence of the same dual catalyst system, with distinct
inorganic bases to modulate the chemoselectivity. Moreover,
this work represents the first enantioselective photocatalytic
example of quinoxalin-2(1H)-ones. We anticipate that this
result will encourage the pursuit of more kinds of chemo-
divergent asymmetric photocatalytic reactions, although the
highly reactive radicals constitute a central challenge, thus
robustly promoting the advancement of the pharmaceutical
industry.
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