Cite this article as: Chin J Catal, 2007, 28(10): 847-849.

Available online at www.sciencedirect.com

SHORT COMMUNICATION

Iridium-Catalyzed Asymmetric Hydrogenation of (2*H*-chromen-3-yl)methanols

LIU Qibin, ZHOU Yonggui*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China

Abstract: *Trans*-cyclohexane-backbone iridium complexes with different axial chirality were synthesized from (1R,2S)-2-(pyridin-2-yl) cyclohexanol, and their application in asymmetric hydrogenation of (2H-chromen-3-yl)methanols was investigated. When the hydrogenation was carried out using 1% **Ir-8** as the catalyst at a hydrogen pressure of 5 MPa in dichloromethane for 16 h at room temperature, excellent activities and up to 94% ee were obtained.

Key Words: (2H-chromen-3-yl)methanol; asymmetric hydrogenation; iridium catalyst

The importance of the chromane skeleton in the area of biologically active compounds is well recognized. For example, 3-hydroxymethylchromanes are important intermediates in the synthesis of α -adrenergic blocking agents and nootropic drugs [1]. However, the preparation of optically active 3-hydroxymethylchromanes was reported in only a few examples. In 1996, Zecchi's group [2] used a molecular [3+2] cycloaddition strategy to get a series of chiral 3-hydroxymethylchromanes. Subsequently, in 2003, Hanselmann's group [3] developed Lewis acid-catalyzed [3+2] cycloaddition to synthesize 3-hydroxymethylchromane.

Through a retrosynthetic analysis (Scheme 1), the simplest method to prepare chiral 3-hydroxymethylchromanes (1) is the asymmetric hydrogenation of (2*H*-chromen-3-yl)methanols (2). As an extension of our work on the asymmetric hydrogenation of unfunctionalized olefins [4,5], we report here a method to synthesize chiral 3-hydroxymethylchromanes by iridium-catalyzed asymmetric hydrogenation [6].

3-hydroxymethylchromanes

(2*H*-chromen-3-yl)methanols can be conveniently synthesized from substituted salicylaldehydes according to a method in the literature [7]. Using (2*H*-chromen-3-yl)methanol as a model substance, we evaluated five different classes of iridium complex catalysts (Scheme 2): cyclohexane-backbone **Ir-1** and **Ir-2** [4] and biocyclic **Ir-3** [5] developed by us, and PHOX (phosphinooxazoline)-derivatized **Ir-4** [8] and Thre-PHOX-derivatized **Ir-5** [9] developed by Pfaltz's group.

Scheme 2 Iridium complexes used in asymmetric hydrogenation of (2*H*-chromen-3-yl)methanol

Received date: 2007-06-19.

^{*} Corresponding author. Tel/Fax: +86-411-84379220; E-mail: ygzhou@dicp.ac.cn

Foundation item: Supported by the National Natural Science Foundation of China (20672112).

Copyright © 2007, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier BV. All rights reserved.

The hydrogenation was carried out using 1% (molar fraction) catalyst and a hydrogen pressure of 5 MPa in dichloromethane. As shown in Table 1, only **Ir-1**, **Ir-2**, and **Ir-4** gave full conversion at room temperature after 16 h, and **Ir-1** was the most promising catalyst. In comparison to **Ir-1**, **Ir-2** showed a slightly lower enantioselectivity (75% ee in entry 2 vs 81% ee in entry 1). However, the enantioselectivity of the product using catalyst **Ir-4** was much lower and only 51% ee was obtained (entry 4). Very unfortunately, the low activity catalysts **Ir-3** and **Ir-5** gave poor enantioselectivities (52% ee in entry 3 and 34% ee in entry 5). After a careful comparison, the cyclohexane-backbone **Ir-1** series was chosen to further improve the enantioselectivity of the reaction.

 Table 1
 Iridium-catalyzed asymmetric hydrogenation of (2H-chromen-3-yl)methanol

	2a	1a			
Entry	Complex	Conversion ^a (%)	ee ^b (%)		
1	Ir-1	>99	81 (<i>R</i>)		
2	Ir-2	>99	75 (R)		
3	Ir-3	20	52 (R)		
4	Ir-4	>99	51 (S)		
5	Ir-5	60	34 (<i>R</i>)		
6	Ir-6	>99	89 (R)		
7	Ir-7	>99	90 (R)		
8	Ir-8	>99	94 (<i>R</i>)		

Reaction conditions: substrate 0.25 mmol, complex 0.0025 mmol, dichloromethane 2 ml, hydrogen pressure 5 MPa, room temperature, 16 h.

^a Determined by ¹H NMR.

^b Determined by chiral HPLC (OJ-H).

Considering the accessibility of materials, we decided to alter the substituting group of the phosphorus atom in the catalyst from diphenyl to the BINOL (1,1'-bi-2-naphthol) derivative. Following the literature procedure [4], enantiopure (1R,2S)-3 was deprotonated with *n*-BuLi and then treated with BINOL-derivatized chlorophosphine to afford the desired N,P-ligands after column separation. Subsequently, these ligands were reacted with [Ir(COD)Cl]₂ and then exchanged with NaBARF (tetrakis[3,5-bis(trifluoromethyl)phenyl]borate sodium) to afford iridium complex catalysts Ir-6 and Ir-7 (Scheme 3). Very interestingly, both (R)- and (S)-BINOLphosphite derivatized catalysts gave full conversion and similar enantioselectivities (89% ee in entry 6 and 90% ee in entry 7), which were superior to Ir-1. These results inspired us to synthesize a more sterically hindered BINOL-derivatized catalyst. Therefore, 3,3'-diphenyl-(S)-BINOL-phosphite was linked to obtain catalyst Ir-8 (Scheme 3). To our delight, catalyst Ir-8 also gave full conversion and a higher enantioselectivity (94% ee in entry 8).

Scheme 3 Synthetic procedure for the iridium complex catalysts (The synthesis conditions are the same as in Ref. [4].)

Under the above optimized conditions, the enantioselective hydrogenation of substituted (2H-chromen-3-yl)methanols 2a-2h was evaluated using catalyst Ir-8 (Table 2). When the OMe group was changed from the 7- to 6- or 8-position, full conversion was obtained except for the 8-substituted compound (98% conversion in entry 2). However, the ee value of the products decreased from 94% to 87% or 88%, respectively. Next, different 6-position substituted groups were studied to investigate their effects on activity and enantioselectivity. It was found that when the 6-position substituted group was an alkyl, full conversion was obtained (entries 5 and 6). Among these, the substances with the methyl and more sterically hindered t-Bu group gave 90% ee (entry 5) and higher 94% ee (entry 6), respectively. When the 6-position substituted group was phenyl, full conversion and lower enantioselectivity were obtained (85% ee in entry 7). For the β -naphthyl-1-formaldehyde-derivatized substance (2h), catalyst Ir-8 gave full conversion and 92% ee (entry 8).

 Table 2
 Ir-8-catalyzed asymmetric hydrogenation of (2H-chromen-3-yl)methanols

1		OH R		Η
	2a-21	1	1a-1h	
Entry	Substrate	R	Conversion (%)	ee (%)
1	2a	Н	>99	94 (R)
2	2b	8-OMe	98	88 (R)
3	2c	7-OMe	>99	94 (<i>R</i>)
4	2d	6-OMe	>99	87 (R)
5	2e	6-Me	>99	90 (R)
6	2f	6- <i>t</i> -Bu	>99	94 (<i>R</i>)
7	2g	6-Ph	>99	85 (R)
8	2h	5,6 = -(CH=CH) ₂ -	>99	92 (R)

Reaction conditions are the same as in Table 1.

In summary, iridium-catalyzed asymmetric hydrogenation of (2*H*-chromen-3-yl)methanols to chiral 3-hydroxymethylchromanes was performed and catalyst **Ir-8** showed excellent activity and up to 94% ee.

References

- Mouysset G, Payard M, Grassy G, Tronche P, Dabire H, Mouille P, Schmitt H. *Eur J Med Chem*, 1987, **22**(6): 539
- [2] Broggini G, Folcio F, Sardone N, Sonzogni M, Zecchi G. Tetrahedron: Asymmetry, 1996, 7(3): 797
- [3] Hanselmann R, Zhou J C, Ma P, Confalone P N. J Org Chem, 2003, 68(22): 8739
- [4] Liu Q B, Zhou Y G. Tetrahedron Lett, 2007, 48(12): 2101

- [5] Liu Q B, Yu C B, Zhou Y G. Tetrahedron Lett, 2006, 47(27): 4733
- [6] Cui X H, Burgess K. Chem Rev, 2005, 105(9): 3272
- [7] Satoh Y, Stanton J L, Hutchison A J, Libby A H, Kowalski T J, Lee W H, White D H, Kimble E F. J Med Chem, 1993, 36(23): 3580
- [8] Lightfoot A, Schnider P, Pfaltz A. Angew Chem, Int Ed, 1998, 37(20): 2897
- [9] Menges F, Pfaltz A. Adv Synth Catal, 2002, 344(1): 40