Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

hydrogenation

tetrahydroisoquinolines

iridium

L. SHI, Z.-S. YE, L.-L. CAO, R.-N. GUO, Y. HU, Y.-G. ZHOU* (DALIAN INSTITUTE OF CHEMICAL PHYSICS, P. R. OF CHINA)

Enantioselective Iridium-Catalyzed Hydrogenation of 3,4-Disubstituted Isoquinolines *Angew. Chem. Int. Ed.* **2012**, *51*, 8286–8289.

Iridium-Catalyzed Enantioselective Hydrogenation of Isoquinolines

Selected examples:

Proposed stereochemical model:

dynamic kinetic resolution high enantioselectivity:
$$k_{-1} >> k_2 >> k_3$$
 CO_2Et
 K_1
 K_1
 K_1
 K_2
 K_2
 K_1
 K_2
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2
 K_2
 K_1
 K_2
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2
 K_2
 K_1
 K_2
 K_1
 K_2
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2
 K_2
 K_1
 K_2
 K_1
 K_2
 K_2
 K_1
 K_2
 K_2
 K_3
 K_1
 K_1
 K_2
 K_3
 K_1
 K_1
 K_2
 K_3
 K_1
 K_1
 K_2
 K_3
 K_1
 K_1
 K_2
 K_1
 K_2
 K_3
 K_1
 K_2
 K_1
 K_2
 K_3
 K_1
 K_2
 K_1
 K_1
 K_2
 K_1
 K_1
 K_2
 K_1

Significance: The authors describe an efficient enantioselective iridium-catalyzed hydrogenation of 3,4-disubstituted isoquinolines. Given the prevalence of the chiral 1,2,3,4-tetrahydroisoquinoline motif in several bioactive molecules, this direct hydrogenation process is highly desirable.

Comment: Control experiments suggested that the reaction proceeds step-wise with 1,2-di-hydroisoquinoline as an intermediate, and the dynamic kinetic resolution phenomena is the cause of high asymmetric induction. The presence of the halogen additive showed a significant effect on the selectivity.

SYNFACTS Contributors: Hisashi Yamamoto, Mahiuddin Baidya Synfacts 2012, 8(11), 1226 Published online: 22.10.2012

DOI: 10.1055/s-0032-1317392; Reg-No.: H13512SF