
Articles
https://doi.org/10.1038/s41557-019-0393-8

Department of Chemistry, University of Cambridge, Cambridge, UK. *e-mail: mjg32@cam.ac.uk

The development of methods catalysed by transition metals for 
converting C(sp3)–H bonds into a new chemical functionality 
is an emerging technology that has the potential to stream-

line chemical synthesis1–3. An important feature of many C(sp3)–H 
functionalization strategies is the use of coordinating groups, which 
locate a metal catalyst in proximity to a particular C–H bond, thereby 
enabling reactivity and ensuring selectivity. In an ideal situation, a 
native functionality present in the molecule would be capable of 
steering the C(sp3)–H activation via cyclometallation. Among a lim-
ited number of examples, carboxylic acids4,5 as well as primary and 
secondary amines6 have been most successfully deployed in com-
bination with Pd(ii) catalysts to affect C(sp3)–H functionalization 
reactions. However, it is more common that the native functional 
group needs to be modified with an additional directing auxiliary 
to modulate its coordinating ability, which has led to a diverse range 
of Pd(ii)-catalysed C(sp3)–H activation processes7,8. Despite the effi-
cacy of auxiliary-augmented C(sp3)–H activation strategies, a num-
ber of practical drawbacks of this approach exist. First, the auxiliary 
must be incorporated into the substrate prior to, and removed after, 
the C–H transformation. Second, their removal sometimes requires 
harsh conditions that can be incompatible with delicate molecular 
architectures. A third, and arguably the most compelling, limitation 
is that auxiliary-augmented C(sp3)–H activation is not possible if 
there is no functionality in the substrate to which a directing motif 
can be appended. This problem is especially pertinent when consid-
ering C(sp3)–H activation in tertiary alkylamines; there is no simple 
way to attach and remove a directing auxiliary within a tertiary 
alkylamine motif9–16.

With an estimated 26% of all drugs and agrochemicals featur-
ing a tertiary alkylamine17,18, the development of robust catalytic 
methods to assemble and modify the structure of these important 
molecular features provides a continual challenge to chemical syn-
thesis19–28. A selective single-step transformation of a tradition-
ally unreactive C–H bond, proximal to the nitrogen atom, into a 
versatile chemical entity would be a particularly powerful strat-
egy for introducing functional complexity to tertiary alkylamines. 
Despite the apparent efficacy of this ideal, practical and selective  

metal-catalysed C(sp3)–H activation facilitated by tertiary alkyl-
amine scaffolds remains an elusive transformation (Fig. 1a). A pos-
sible reason for this methodological deficiency is the ease with which 
the electron-rich nitrogen atom in tertiary alkylamines can undergo 
decomposition reactions in the presence of many transition metal 
salts and commonly used oxidants, thus precluding the desired 
C–H activation pathway (Fig. 1b)29. Using alternative strategies, 
Hartwig has reported steric-controlled Rh- (ref. 30), Ru- (ref. 31) and 
Ir-catalysed32 C(sp3)–H borylation at methyl groups within simple 
tertiary alkylamines, in some cases with selectivity at the β-position. 
Remote C(sp3)–H oxidations using Pt (ref. 33), Ru (ref. 34), Fe35 and 
W (ref. 36) catalysts under strongly acidic conditions, wherein the 
transformation is guided by the C–H bond reactivity rather than the 
directing effect of the amine, have also been described. However, 
no examples of catalytic C(sp3)–H functionalization directed by ter-
tiary alkylamines have been reported (Fig. 1a,b). Given the ubiquity 
of tertiary alkylamines in biologically important molecules and the 
potential efficacy of a method that introduces aryl entities proximal 
to the nitrogen motif37, the development of strategies involving cata-
lytic C(sp3)–H activation directed by tertiary alkylamines to guide 
building block functionalization, fragment coupling and late-stage 
functionalization of biologically relevant molecules is an unmet 
synthetic need (Fig. 1c).

Results and discussion
We reasoned that a successful Pd(ii)-catalysed tertiary-alkylamine-
directed C(sp3)–H arylation strategy would depend on the effec-
tive coordination of the substrate to the metal. The nitrogen atom 
is nucleophilic but often sterically hindered; however, based on 
Ryabov’s cyclopalladation studies with benzylamines38, we proposed 
that the opposing steric and electronic characteristics inherent to 
tertiary alkylamines might synergistically combine to promote for-
mation of the mono-amine Pd(ii) complex required for C–H activa-
tion (Fig. 1b). However, the Pd(ii)-ligated nitrogen motif in tertiary 
alkylamines will often be surrounded by a number of C–H bonds 
that can undergo deleterious β-hydride elimination reactions. 
Initial investigations revealed that a reaction between amine 1a 
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and phenylboronic acid 2a under commonly used Pd(ii)-catalysis 
conditions led to significant amine decomposition and no aryla-
tion (see Supplementary Fig. 1)6. Computational analysis revealed 
a lower energy pathway for an acetate-assisted β-hydride elimina-
tion (Ts2) (Fig. 2a) than the desired C(sp3)–H activation (Ts1), sup-
porting the experimental observations. Interestingly, inner-sphere 
acetate-assisted β-hydride elimination (Ts2) is rarely considered 
for this common decomposition reaction39, yet all of our calcula-
tions converged on this pathway. We considered whether the intro-
duction of a ligand would modulate the energetic preference for 
these competing pathways. While a number of directing functional 
groups are capable of intrinsically switching between neutral and 
anionic coordination to the Pd(ii) catalyst, thereby supporting the 
use of ligands with diverse binding modes40, the neutral coordinat-
ing nitrogen atom in tertiary alkylamines restricts the type of ligand 
that can be deployed for C(sp3)–H activation. We speculated that 
C(sp3)–H activation in tertiary alkylamines would be matched to 
the coordination properties of N-acetyl α-amino acid ligands11,41,42, 
permitting the Pd(ii) centre to accommodate the bisanionic ligand 
(which contains the basic acetamide needed for C–H bond cleav-
age), the neutral amine and the vacant coordination site required 
for C–H activation. Yu and co-workers have previously developed a 
Pd(ii)-catalysed method for arylation of C(sp3)–H bonds in N-alkyl 
sulfonamides with derivatives of aryl-boronic esters11. In their  

studies, they reported that an N-acetyl amino acid ligand was cru-
cial for reactivity, with no reaction in its absence.

Interestingly, we found that including N-acetyl tert-leucine 4a as 
a ligand lowered the energy of the C(sp3)–H activation step (Ts3) 
relative to the corresponding ligand-assisted β-hydride elimination. 
We believe that the ligand distorts the co-planar geometry empiri-
cally required for β-hydride elimination (Ts4), making base-assisted 
C–H activation the more favoured pathway (see Supplementary 
Table 5), and represents an extension to the reactivity-inducing 
capacity of this class of ligand. Our calculations were validated 
by a reaction employing 25 mol.% of ligand 4a, which produced a 
moderate yield of the γ-aryl alkylamine 3a. An extensive assess-
ment of reaction parameters revealed optimal conditions, which  
involved the treatment of 2.5 equiv. amine 1a and phenylboronic 
acid 2a with 10 mol.% Pd(OAc)2, 25 mol.% N-acetyl tert-leucine 4a, 
2.5 equiv. Ag2CO3 and 2 equiv. 1,4-benzoquinone in a solution of 
N-methyl-2-pyrrolidone (NMP) at 50 °C for 15 h to afford 3a in an 
81% yield (Fig. 2b).

An initial proposal for the reaction mechanism of the C(sp3)–H 
arylation directed by tertiary alkylamine begins with coordi-
nation of amine 1a to the Pd(ii)·ligand catalyst to form Int-I. 
Cyclopalladation via ligand-assisted concerted metallation deprot-
onation affords palladacycle Int-II, which undergoes transmetalla-
tion with 2a to Int-III; reductive elimination of of the C(sp3)–C(sp2) 
groups, possibly facilitated by benzoquinone43, generates amine 3a 
and Pd(0), which reforms the catalytically active Pd(ii)·ligand spe-
cies upon oxidation with Ag(i).

Having established optimal conditions for γ-C(sp3)–H aryla-
tion, we next explored the scope of the amine component (Table 1).  
The N-propyl piperidine scaffolds bearing different functional-
ities on the heterocycle underwent efficient C(sp3)–H arylation to 
the desired products 3a–m in generally good yields. The yields of 
product were slightly reduced in the presence of electron-with-
drawing substituents on the heterocycle (3e,f), which may reflect 
the attenuated binding of the amine to the Pd(ii) catalyst brought 
about by the inductive effect of the remote functionality. Substrates 
displaying Lewis-basic aromatic heterocycles were compatible with 
the reaction conditions, delivering γ-arylated products adorned 
with the functionality commonly found in pharmaceutical and 
agrochemical intermediates (3h–j). The reacting C(sp3)–H bond 
can also be located in a 2-ethyl substituent on the piperidine ring, 
producing amine 3n in useful yield. Interestingly, a substrate with 
the targeted C–H bond in a 3-methyl substituent on the hetero-
cycle undergoes arylation to the 3-benzyl-piperidine derivative 3o. 
This means that cyclopalladation must have involved the Pd(ii) 
catalyst binding to the axial lone pair of the piperidine nitrogen, 
with the reacting methyl group also projected in the axial posi-
tion. Other saturated heterocycles, including protected piperazines, 
morpholines and diazepanes, were compatible with the γ-C(sp3)–H 
arylation (3p–s); the lower yield of pyrrolidine 3t is due to com-
peting β-hydride elimination. Acyclic scaffolds were also compat-
ible with the arylation process. The N,N-dimethyl-derived tertiary 
alkylamines, for example, are one of the most common classes of 
amines featured in pharmaceutical and agrochemical agents, and a 
method to elaborate their structures would represent an attractive 
transformation. However, these substrates can contain up to eight 
C–H bonds adjacent to nitrogen, which means they are especially 
prone to β-hydride elimination on complexation with Pd(ii) salts. 
Therefore, we were pleased to find that a range of N,N-dialkylamine 
derivatives smoothly reacted to form amines 3u–ac in good yield, 
reinforcing the ligand effect in facilitating C(sp3)–H activation 
over β-hydride elimination. Acyclic tertiary alkylamines display-
ing a variety of α- and β-substituents along the reacting alkyl chain 
also undergo γ-C(sp3)–H arylation (3v–y), and useful functionality 
could also be incorporated into the non-reacting alkyl substituents 
without affecting the success of the reaction (3ac). In a case where 
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Fig. 1 | Design plan towards γ-C(sp3)–H arylation of tertiary alkylamines. 
a, Direct methods to selectively arylate tertiary alkylamines at the 
γ-position do not exist. b, Directed C(sp3)–H activation is a potential 
solution to the functionalization of tertiary alkylamines; however, 
the presence of C–H bonds adjacent to the nitrogen atom could 
lead to undesired β-hydride elimination. c, Applications for a Pd(ii)-
catalysed γ-C(sp3)–H arylation of tertiary alkylamines, which include 
the functionalization of available tertiary-alkylamine building blocks, a 
convergent strategy for target synthesis, late-stage functionalization and 
enantioselective synthesis of tertiary alkylamines.
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two equivalent propyl groups are present, 81% of the mono-arylated 
3aa product is isolated with only trace amounts (8%) of the com-
petitive diarylation product observed.

Next, we evaluated the scope of the aryl-boronic acid coupling 
partner. Aryl groups with electron-donating and -withdrawing 
substituents at the para- and meta-positions were incorporated 
with good yields to form the γ-aryl alkylamine products (3ad–am); 
unfortunately, ortho-substituted aryl-boronic acids resulted in a 
lower yield (3an). Palladium-sensitive functionalities such as aryl 
bromides (3ag,ah) were tolerated under the mild reaction condi-
tions. Heteroaryl-boronic acids, such as those containing func-
tionalized pyridines and indoles, were successfully introduced into 
the tertiary amine framework (3ao–ar), offering opportunities for 
downstream structure modification.

Fenpropimorph 5, a marketed fungicide, can be synthesized in 
a single step from readily available materials (1ad and 2p), dem-
onstrating a convergent coupling application to target synthesis 
(Fig. 3a). Such a strategy would be particularly appealing for the 
synthesis of fenpropimorph analogues, wherein assembly via clas-
sical reductive amination or alkylation strategies may be limited by 
the availability of the corresponding substituted α-methyl hydrocin-
namaldehyde or C3-3-aryl-1-halo-2-methylpropanes, respectively; 
readily available N-propyl amines could be directly combined with 

the vast array of commercial aryl-boronic acids, providing imme-
diate access to a library of analogues. We found that N-propyl 
analogues of donezepil, ciprofloxacin and fluoxetine underwent 
γ-C(sp3)–H arylation without affecting the functionality in these 
molecules. (6–8, Fig. 3b). The tricyclic antidepressant trimipra-
mine, which is used to treat major depressive disorders, was also 
an excellent substrate for the arylation process, affording γ-(hetero)
aryl tertiary alkylamine derivatives 9a–c in excellent yield (Fig. 3c); 
90% of the unreacted excess amine starting material can be recov-
ered, further demonstrating the role of ligand 4a in controlling the 
selectivity between potentially competing pathways. The success of 
this transformation demonstrates the potential of its application as a 
tool for late-stage functionalization of pharmaceutical agents; many 
different aryl groups could be transferred to already biologically 
active molecules, producing previously unexplored candidates that 
would require multistep syntheses to prepare by traditional means.

Given that the γ-C(sp3)–H arylation process requires the pres-
ence of ligand 4a, we questioned whether an enantioselective 
transformation might be possible when using prochiral N-isobutyl 
tertiary alkylamines (1ae–ag), thereby generating non-racemic 
β-methyl γ-aryl propylamines that would be difficult to synthe-
size directly by other methods. Enantioselective desymmetriza-
tion of isobutyl groups is challenging because the catalyst must  
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sterically discriminate between an β-hydrogen atom and a relatively 
small β-methyl group. Furthermore, the prochiral centre is distant 
from the chirality in the Pd(ii) catalyst, making enantioselective 
control more challenging44,45. On the basis of computational stud-
ies, we noted a distinction between two chair-like transition states 
that orient the non-reacting methyl group in either an equatorial 
(Ts5) or axial (Ts6) position; the latter transition state appears to be  
destabilized by pseudo-1,3-diaxial interactions between the axial  

N-Me and the non-reacting methyl group and carries an energetic 
cost of 2.1 kcal mol−1 (Fig. 3d). Under the previously optimal con-
ditions, 1ae (R = Me) was converted to 3as with an e.e. of 81%; 
conducting the reaction in dimethylformamide (DMF) at 40 °C 
increased the e.e. to 90%. Interestingly, comparable enantioselec-
tivity was observed with the N-acetyl alanine as ligand (86% e.e.), 
suggesting that steric parameters alone are not responsible for the 
asymmetric induction. Computational analysis suggested that the 

Table 1 | Scope of the γ-C(sp3)–H arylation in tertiary alkylamines
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α-substituent on the ligand projects the amide moiety below the 
square-plane of the palladium(ii) complex, which relays the chiral 
information to the ligated substrate and controls its conformation. 
The calculated e.e. (88% for 4a, 83% for N-acetyl alanine) agreed 
with experimental values. A range of aryl-boronic acids and acyclic 
tertiary alkylamines exhibited good yields and e.e. values (3as–aw), 
showing only minimal erosion of the enantioselectivity compared 
to the parent reaction. Despite the lower levels of asymmetric 
induction, this enantioselective γ-C(sp3)–H arylation methodology 
can be used to synthesize the fungicide fenpropidin (3ax) directly 
from readily available materials in 49% yield and with an e.e. of 64%. 

To the best of our knowledge, the only enantioselective synthesis of 
this compound has been described as requiring six chemical steps; 
the synthesis of non-racemic substituted-aryl analogues of these 
fungicides would also be directly accessible through this method 
(vide supra)46. Finally, we also demonstrated that the process of 
γ-arylation directed by tertiary alkylamines can be applied to meth-
ylene C–H bonds (Fig. 3e). On treatment with the standard condi-
tions, the cyclic dimethylamine derivative 10 underwent methylene 
C–H arylation to form 11 in a modest, but encouraging, 34% yield. 
Notably, 11 was produced mainly as the trans isomer, reflecting a 
proposed intermediate (Int-IV) prior to C–H activation that must 
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d, Enantioselective γ-C(sp3)–H arylation of tertiary alkylamines. Using substrates containing reacting enantiotopic β-methyl groups, an enantioselective 
desymmetrizing arylation generates non-racemic β-methyl-γ-aryl tertiary alkylamine products. e, Preliminary investigations into methylene C–H activation 
of tertiary alkylamines show selectivity for the trans isomer on cyclic systems.
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proceed through to a 5,6-trans-fused palladacycle; the e.e. of the 
arylation was also found to be a promising 64% (ref. 47).

In summary, we have developed a ligand-enabled Pd(ii)-
catalysed γ-C(sp3)–H arylation process capable of selectively func-
tionalizing a range of tertiary alkylamines with aryl-boronic acids. 
As well as having abilities to functionalize building-block-type 
amines, synthesize biologically active molecules and be applied as 
a late-stage functionalization tool, this reaction can also be per-
formed enantioselectively.
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