Literature Report 2

Iron-Catalyzed C(sp³)–C(sp³) Coupling to Construct Quaternary Carbon Centers

Reporter: Yan-Xin Sun Checker: Kai Xue Date: 2024-03-25

Zhang, Q.; Liu, X.-Y.; Zhang, Y.-D.; Huang, M.-Y.; Zhang, X.-Y.; Zhu, S.-F. J. Am. Chem. Soc. 2024, 146, 5051

CV of Prof. Shou-Fei Zhu

Background:

- **1996-2000** B.S., Nankai University
- **2000-2005** Ph.D., Nankai University
- **2005-2008** Lecturer, Nankai University
- **2008-2013** Associate Professor, Nankai University
- **2013-now** Professor, Nankai University

Research:

- > Asymmetric Synthesis
- Homogeneous Catalysis

3

Examples of the Bioactive Molecules Containing All-Carbon Quaternary Center

Ling, T.; Rivas, F.* *Tetrahedron* **2016**, *72*, 6729; Susse, L.; Stoltz, B. M.* *Chem. Rev.* **2021**, *121*, 4084; Xue, W.; Jia, X.; Wang, X.; Tao, X.; Yin, Z.; Gong, H.* *Chem. Soc. Rev.* **2021**, *50*, 4162

3° C(sp³)-1° C(sp³) Coupling

Iwasaki, T.; Takagawa, H.; Singh, S. P.; Kuniyasu, H.; Kambe, N.* J. Am. Chem. Soc. 2013, 135, 9604

Introduction

Iwasaki, T.; Takagawa, H.; Singh, S. P.; Kuniyasu, H.; Kambe, N.* J. Am. Chem. Soc. 2013, 135, 9604

Wang, X.; Ma, G.; Peng, Y.; Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H.* J. Am. Chem. Soc. 2018, 140, 14490

Introduction

Wang, X.; Ma, G.; Peng, Y.; Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H.* J. Am. Chem. Soc. 2018, 140, 14490

Yang, C.-T.; Zhang, Z.-Q.; Liang, J.; Liu, J.-H.; Lu, X.-Y.; Chen, H.-H.; Liu, L.* *J. Am. Chem. Soc.* **2012**, *134*, 11124; Tindall, D. J.; Krause, H.; Furstner, A.* Adv. Synth. Catal. **2016**, *358*, 2398

Tamura, M.; Kochi, J.* *J. Organomet. Chem.* **1971**, *31*, 289; Tamura, M.; Kochi, J. K.* *J. Am. Chem. Soc.* **1971**, *93*, 1487; Cahiez, G.; Avedissian, H.* Synthesis **1998**, *1998*, 1199

Introduction

Smith, R. S.; Kochi, J. K.* J. Org. Chem. **1976**, *41*, 502

Enantioselective Cross-Coupling Reactions of α-Chloroesters

Introduction

Jin, M.; Adak, L.; Nakamura, M.* J. Am. Chem. Soc. 2015, 137, 7128

Difluoromethylation of Arylzincs with Difluoromethyl 2-Pyridyl Sulfone

Introduction

Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J.* J. Am. Chem. Soc. 2018, 140, 880

Project Synopsis

Optimization of the Reaction Conditions

Entry ^a	Cat.	Additive	Conv. (%)	3a yield (%)	3a' yield (%)	1a' yield (%)
1	-	-	75	12	8	50
2 ^b	FeCl ₂	-	>98	49	44	0
3°	C1	-	>98	78	19	0
4 ^c	C1	LiCI	>98	90	5	0
5	C1	LiCl	>98	90 (81)	4	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv.), [M] (0.5 mol%), ZnCl₂ (0.2 mmol, 1.0 equiv.), and additive (1.0 equiv.) in THF were stirred at 22–25 °C for 2 h. The yields were determined by ¹H NMR using CH_2Br_2 as an internal standard. The isolated yield was given in parentheses. ^{*b*}FeCl₂ (5 mol%). ^{*c*}Fe(BF-Phos)Cl₂ (1 mol%).

Optimization of the Reaction Conditions

Entry ^a	Cat.	Additive	Conv. (%)	3a yield (%)	3a' yield (%)	1a' yield (%)
6	C2	LiCI	>98	77	19	2
7	C3	LiCI	>98	72	25	2
8	C4	LiCI	>98	76	21	2
9	C5	LiCI	>98	66	29	2
10	C6	LiCI	>98	70	25	2
11 ^d	[Co]	LiCI	>98	3	72	18
12 ^e	[Ni]	LiCI	96	4	69	13
13 ^f	[Cu]	LiCI	95	6	56	32

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv.), [M] (0.5 mol%), $ZnCl_2$ (0.2 mmol, 1.0 equiv.), and additive (1.0 equiv.) in THF were stirred at 22–25 °C for 2 h. The yields were determined by ¹H NMR using CH_2Br_2 as an internal standard. The isolated yield was given in parentheses. ^{*b*}FeCl₂ (5 mol%). ^{*c*}Fe(BF-Phos)Cl₂ (1 mol%). ^{*d*}[Co] = Co(BF-Phos)Cl₂. ^{*e*}[Ni] = Ni(BF-Phos)Cl₂. ^{*f*}[Cu] = Cu(BF-Phos)Cl₂.

Substrate Scope

Mechanistic Investigation

Radical Trapping Experiments

Radical Clock Experiments

Control Experiments with Fe⁰ as the Catalysts

Proposed Mechanism

Summary

- Iron-catalyzed 3°C(sp³)-2°(sp³) coupling
- Efficient construction of all-carbon quaternary center
- Broad substrate scope and good functional groop tolerance
- Directing group enabled C-C coupling strategy

Strategy for Writing The First Paragraph

过去C-C键构建方法

引出本文工作

✓ The efficient construction of C−C bonds constitutes the quintessence of organic synthesis chemistry, with the unveiling of updated strategies for such bond construction significantly expanding the conceptual sphere of synthetic design and substantially elevating the liberty of synthetic exploration. As a result, the development of C−C bondforming methodologies has attracted considerable interest. Among these, transition-metal-catalyzed coupling reactions stand out as particularly potent, exemplified by the ubiquity of Suzuki and Negishi cross-couplings in the assembly of functional molecules relevant to pharmaceuticals and materials.....

✓ To date, only a few successful couplings involving tertiary C(sp³) with C(sp²) and primary C(sp³) have been reported. Moreover, the coupling of tertiary C(sp³) with secondary C(sp³) has been rarely recorded with two special examples, and both used Grignard reagents as nucleophiles. Addressing this challenge is not only a key fundamental issue for synthetic chemistry but also provides a foundation toward a paradigm shift in the synthetic approach to the construction of quaternary carbons.

Strategy for Writing The Last Paragraph

- ✓ In conclusion, we have successfully realized the coupling of tertiary, secondary, and primary alkyl halides with organozinc reagents catalyzed by cost-effective iron complexes.
- ✓ Notably, this work represents remarkable achievement in coupling tertiary C(sp³) with secondary C(sp³) centers, overcoming the substantial steric hindrances that have historically impeded transition-metal-catalyzed couplings and suppressing side reactions like elimination and isomerization. Our preliminary mechanistic studies suggest the involvement of alkyl radicals in the reaction pathway, with the amide bond potentially acting as a directing group, and Fe0 initiated the process. This breakthrough marks a pivotal advancement for the efficient construction of all-carbon quaternary carbon centers. The detail mechanistic studies are underway in our laboratory.

- Among these, transition-metal-catalyzed coupling reactions stand out as particularly potent, exemplified by the ubiquity of Suzuki and Negishi cross-couplings in the assembly of functional molecules relevant to pharmaceuticals and materials.(ubiquity, n. 到处存在, 普遍存在)
- This protocol marks the inaugural instance of efficient catalytic coupling between tertiary C(sp³) and secondary C(sp³) using organo zinc reagents. (inaugural, adj. 就职的,就任的;创始的,最早的)
- In conclusion, we have successfully realized the coupling of tertiary alkyl halides with organozinc reagents catalyzed by cost-effective iron complexes.(cost-effective, adj. 划 算的;成本效益好的)

Thanks for your attention