

Copper-Catalyzed Asymmetric Interrupted Kinugasa Reaction

Reporter: Bo Wu Checker: Yu-Qing Bai Date: 2023/02/20

Zhong, X.; Zhou, W.; Cai, Q. Angew. Chem. Int. Ed. 2022, e202208323

2 Asymmetric Kinugasa Reaction

3 Asymmetric Interrupted Kinugasa Reaction

.

Introduction

Kinugasa Reaction

Kinugasa, M.; Hashimoto, S. J. Chem. Soc. Chem. Commun. 1972, 466

Miura, M.; Enna, M.; Okuro, K.; Nomura, M. J. Org. Chem. 1995, 60, 4999

Asymmetric Kinugasa Reaction

Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572

Shintani, R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 4082

Shu, T.; Zhao, L.; Enders, D. Angew. Chem. Int. Ed. 2018, 57, 10985

Qi, J.; Wei, F.; Tung, C.-H.; Xu, Z. Angew. Chem. Int. Ed. 2021, 60, 4561

Qi, J.; Wei, F.; Tung, C.-H.; Xu, Z. Angew. Chem. Int. Ed. 2021, 60, 13814

Zhong, X.; Zhou, W.; Cai, Q. Angew. Chem. Int. Ed. 2022, e202208323

Optimization of Reaction Conditions

_

	N I Bn 1a	$ + \Theta_{0} + Ph^{\Theta_{0}} $	L* (.Ph <u>Cu(CH₃CN</u> base, s	12 mol%) l) ₄ BF ₄ (10 mol%) olvent, 25 ^o C	Jaa	Ph N Ph O Bn
Entry	L*	Base	Solvent	Yield (%)	Ee (%)	Me_Me
1	L1	LiO ^{<i>t</i>} Bu	MeCN	69	26	
2	L2	LiO ^{<i>t</i>} Bu	MeCN	64	6	
3	L3	LiO ^{<i>t</i>} Bu	MeCN	57	10	к к L1: R = Bn
4	L4	LiO ^{<i>t</i>} Bu	MeCN	66	80	L2 : R = ^{<i>t</i>} Bu L3 : R = Ph
5	L5	LiO ^{<i>t</i>} Bu	MeCN	68	84	Ąr Ąr
6	L6	LiO ^{<i>t</i>} Bu	MeCN	76	91	
7	L6	DIPEA	MeCN	0		$\langle \mathbf{I} \mathbf{I} \rangle$
8	L6	KO ^t Bu	MeCN	14	18	Bn Bn
9	L6	LiO ^{<i>t</i>} Bu	THF	38	44	L4 : Ar = C_6H_5
10	L6	LiO ^{<i>t</i>} Bu	DMF	60	32	L6 : Ar = $4 - t BuC_6 H_4$

Substrate Scope

Substrate Scope

Substrate Scope

Gram-Scale Reactions and Transformations

Control Experiments

Control Experiments

Proposed Mechanism

Writing Strategy

The importance of spiro[azetidineindoline] and progress of the synthesis of spiro[azetidine-3,3'-indoline]

The lack of enantioselective synthesis of spiro[azetidine-3,3'-indolines]

The First Paragraph

Azetidine and indoline are privileged heterocyclic skeletons that widely exist in diversified bioactive natural products and pharmaceuticals. Spiro[azetidine-indoline] and analogues, which merge the two unique motifs of azetidine and indoline, have attracted considerable attention from synthetic and medicinal chemists due to the increased structural complexity and the enhanced three dimensionality in space for drug design. A variety of elegant strategies have been developed for diastereo- and enantioselective construction of chiral spiro[azetidine-indolines]. However, most of these efforts have focused on spiro[azetidine-2,3'-indolines]. A similar spiro[azetidine-indoline] skeleton, spiro[azetidine-3,3'-indoline], has been investigated, but only sporadic examples of the racemic synthesis of such structures have been reported to date.

The First Paragraph

In 2012, Tayler et al. demonstrated a copper-catalyzed C-H/Ar-H functionalization method for spirooxindoles, in which a spiro[azetidine-3,3'-indoline]-2,2'-dione product was obtained in low yield. In 2021, Li and co-workers developed an elegant [3+1] cyclization reaction of oxindolyl azaoxylallyl cations with sulfur ylides, which afforded spiro[azetidine-3,3'-indoline]-2,2'-diones in high yields and with excellent diastereoselectivity. Very recently, Bach et al. demonstrated a graceful synthesis of spiro[azetidine-3,3'-indolin]-2ones or 2,4-diones via a visible light-mediated dearomative hydrogen atom abstraction/cyclization cascade reaction of indoles. Despite of these successes, asymmetric synthesis of chiral spiro[azetidine-3,3'indolines] remains unexplored, and it is highly desirable to develop efficient and practical asymmetric approaches to construct such structures. This will extend the space of spiro[azetidine-indolines] and will provide a great opportunity for the discovery of novel bioactive compounds.

The Last Paragraph

Writing Strategy

In conclusion, we have developed a mild copper-catalyzed asymmetric Kinugasa/C-C coupling cascade reaction of *N*-(2-iodo-aryl)-propiolamides with nitrones. A set of structurally novel, densely functionalized chiral spiro[azetidine-3,3'-indoline]-2,2'-diones were efficiently constructed in this way as single diastereomers in good yields and with high enantiomeric ratios. Further exploration and applications of this method in the synthesis of chiral spiro heterocycles are currently in progress in our laboratory.

Spiro[azetidine-indoline] and analogues, which merge the two unique motifs of azetidine and indoline, have attracted considerable attention from synthetic and medicinal chemists due to the increased structural complexity and the enhanced three dimensionality in space for drug design. (阐述合成重要性)

A similar spiro[azetidine-indoline] skeleton, spiro[azetidine-3,3'-indoline], has been investigated, but only sporadic examples of the racemic synthesis of such structures have been reported to date. (阐 述现状)

No cascade product was obtained in the presence of organic bases and inferior reaction outcomes were observed with other inorganic bases, such as Cs_2CO_3 and BuOK. (条件优化)

Thanks for your attention

Hurtly Reaction

Hurtley, W. R. H. J. Chem. Soc. 1929, 1870

Asymmetric Three-Component Interrupted Kinugasa

Qi, J.; Song, T.; Yang, Z.; Xu, Z. ACS Catal. 2023, 13, 2555

