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Kinugasa Reaction

Reaction of Copper Acetylides with Nitrones
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Asymmetric (Interrupted) Kinugasa Reaction
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Asymmetric Kinugasa Reaction
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Asymmetric Interrupted Kinugasa Reaction
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Asymmetric Interrupted Kinugasa Reaction

Cu-Catalyzed
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Asymmetric Interrupted Kinugasa Reaction

Cu-Catalyzed Asymmetric Three-Component Interrupted Kinugasa
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Asymmetric Interrupted Kinugasa Reaction
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Asymmetric Interrupted Kinugasa Reaction
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Optimization of Reaction Conditions
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Substrate Scope

Scope of N-(2-iodoaryl)propiolamides
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Substrate Scope

Scope of diarylnitrones
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Substrate Scope

ph Scope of C-alkenylnitrones
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Gram-Scale Reactions and Transformations
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Control Experiments
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Control Experiments
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Proposed Mechanism
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Summary

Cu-Catalyzed Asymmetric Kinugasa/C-C Coupling Reaction
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The First Paragraph

Writing Strategy

The importance of spiro[azetidine-
indoline] and progress of the synthesis
of spiro[azetidine-3,3’-indoline]

The lack of enantioselective synthesis
of spiro[azetidine-3,3’-indolines]
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The First Paragraph

Azetidine and indoline are privileged heterocyclic skeletons that
widely exist in diversified bioactive natural products and
pharmaceuticals. Spiro[azetidine-indoline] and analogues, which
merge the two unique motifs of azetidine and indoline, have attracted
considerable attention from synthetic and medicinal chemists due to
the Increased structural complexity and the enhanced three
dimensionality in space for drug design. A variety of elegant
strategies have been developed for diastereo- and enantioselective
construction of chiral spiro[azetidine-indolines]. However, most of
these efforts have focused on spiro[azetidine-2,3’-indolines]. A similar
spiro[azetidine-indoline] skeleton, spiro[azetidine-3,3'-indoline], has
been Iinvestigated, but only sporadic examples of the racemic
synthesis of such structures have been reported to date.
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The First Paragraph

In 2012, Tayler et al. demonstrated a copper-catalyzed C-H/Ar-H
functionalization method for spirooxindoles, in which a spiro[azeti-
dine-3,3’-indoline]-2,2’-dione product was obtained in low yield. In
2021, Li and co-workers developed an elegant [3+1] cyclization
reaction of oxindolyl azaoxylallyl cations with sulfur ylides, which
afforded spiro[azetidine-3,3’-indoline]-2,2’-diones in high yields and
with excellent diastereoselectivity. Very recently, Bach et al.
demonstrated a graceful synthesis of spiro[azetidine-3,3’-indolin]-2-
ones or 2,4-diones via a visible light-mediated dearomative hydrogen
atom abstraction/cyclization cascade reaction of indoles. Despite of
these successes, asymmetric synthesis of chiral spiro[azetidine-3,3’-
Indolines] remains unexplored, and it is highly desirable to develop
efficient and practical asymmetric approaches to construct such
structures. This will extend the space of spiro[azetidine-indolines] and
will provide a great opportunity for the discovery of novel bioactive
compounds.
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The Last Paragraph

Writing Strategy

Summary of this work

Outlook of this work
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The Last Paragraph

In conclusion, we have developed a mild copper-catalyzed
asymmetric Kinugasa/C-C coupling cascade reaction of N-(2-iodo-
aryl)-propiolamides with nitrones. A set of structurally novel, densely
functionalized chiral spiro[azetidine-3,3’-indoline]-2,2’-diones were
efficiently constructed in this way as single diastereomers in good
yields and with high enantiomeric ratios. Further exploration and
applications of this method in the synthesis of chiral spiro
heterocycles are currently in progress in our laboratory.
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Representative Examples

Spiro[azetidine-indoline] and analogues, which merge the two unique
motifs of azetidine and indoline, have attracted considerable attention
from synthetic and medicinal chemists due to the increased structural
complexity and the enhanced three dimensionality in space for drug

design. (Br & EZE )

A similar spiro[azetidine-indoline] skeleton, spiro[azetidine-3,3’-indo-
line], has been investigated, but only sporadic examples of the
racemic synthesis of such structures have been reported to date. (%]
IR IAR)

No cascade product was obtained in the presence of organic bases

and inferior reaction outcomes were observed with other inorganic
bases, such as Cs,CO; and 'BuOK. (1Ht1t)
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Asymmetric Three-Component Interrupted Kinugasa
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