Literature Report V

Asymmetric Total Synthesis of Janthinoid A

Reporter: Yan-Xin Sun

Checker: Sai-Nan Yin

Date: 2025-03-31

Tang, F.; Zhang, Z.-C.*; Song, Z.-L.; Li, Y.-H.; Zhou, Z.-H.; Chen, J.-J.; Yang, Z.* *J. Am. Chem. Soc.* **2025**, *147*, 4731

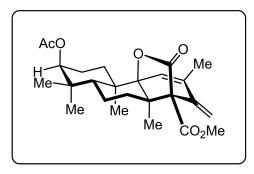
CV of Prof. Zhen Yang (杨震)

Background:

- 1978–1986 B.A., M.S., Shenyang College of Pharmacy
- > 1989–1992 Ph.D., The Chinese University of Hong Kong
- ➤ 1992–1995 Postdoc., The Scripps Research Institute
- 1995–1998 Assistant Professor, The Scripps Research Institute
- > 1998–2001 Institute Fellow, Harvard Medical School
- 2002–Curr. Professor, Peking University

Research:

- Total Synthesis of Bioactive Natrual Products
- Exploring the Thiourea Ligand
- Medicinal Chemistry of Natural Products

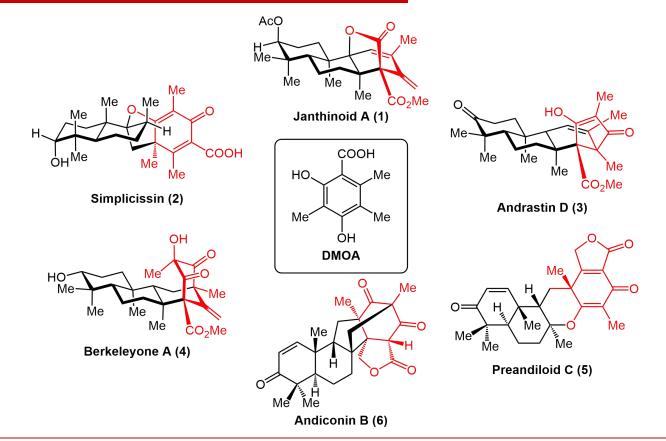

Contents

1 Introduction

Asymmetric Total Synthesis of Janthinoid A

3 Summary

Introduction-Janthinoid A

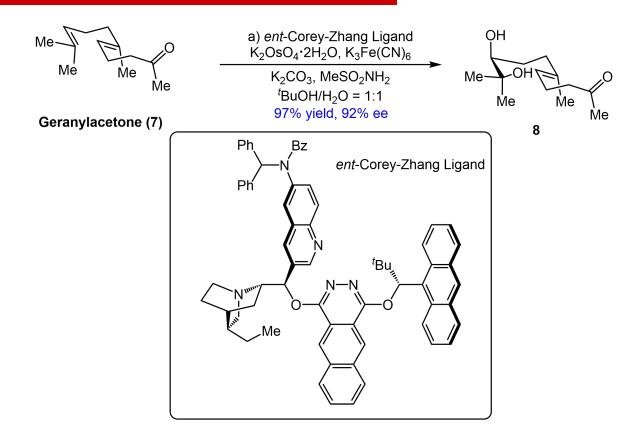


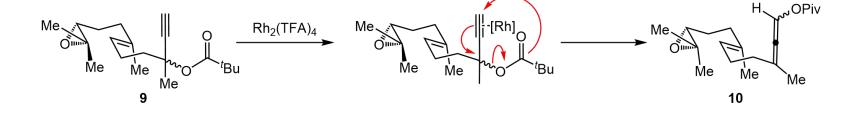
Janthinoid A

- In 2021, **Janthinoid A** was isolated from the tabacum-derived (烟草衍生的) endophytic fungus (内生真菌) *Penicillium janthinellum* TE-43 (微紫青霉菌) by Zhang and co-workers.
- **Janthinoid A**, characterized by a strained oxabicyclo[3.2.1]octane motif with four continuous quaternary stereogenic centers and hallmark embedded rigid lactone, exhibits *in vivo* antitumor activities against NSCLC cells A549.

Li, X.-D.; Su, J.-C.; Jiang, B.-Z.; Li, Y.-L.; Guo, Y.-Q.; Zhang, P. Org. Chem. Front. 2021, 8, 6196

Introduction-Naturally occurring DMOA-derived meroterpenoids




Introduction

Matsuda, Y.; Wakimoto, T.; Mori, T.; Awakawa, T.; Abe, I. J. Am. Chem. Soc. 2014, 136, 15326

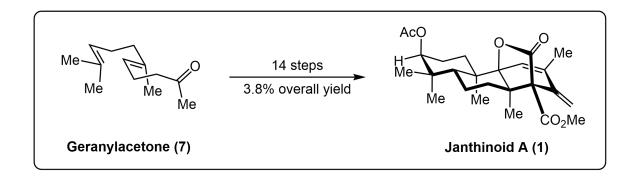
Introduction

Retrosynthetic Analysis

Synthesis of Enol 18

Synthesis of Enol 18

Oxidative Cascade Cyclization of Ketoester 19


Entry	Conditions	Outcome/Yield	
1	Mn(OAc) ₃ ·2H ₂ O (2.2 eq.), Cu(OAc) ₂ (1.0 eq.), AcOH, 25 °C, 1 h	decomposed	
2	$Mn(OAc)_3 \cdot 2H_2O$ (2.2 eq.), $Cu(OAc)_2$ (1.0 eq.), $MeCN$, 25 °C to reflux, 18 h	no reaction	
3	Mn(OAc) ₃ ·2H ₂ O (2.2 eq.), DCM, 25 °C to reflux, 18 h	no reaction	
4	Mn(OAc) ₃ ·2H ₂ O (2.2 eq.), TFA (1.0 eq.), 25 °C, 18 h	20%	
Reaction were carried out at 100 mg scale of 18 at a concertration of 0.01 M.			

Oxidative Cascade Cyclization of Ketoester 19

Entry	Conditions	Outcome/Yield	
5	Fe(ClO ₄) ₃ ·9H ₂ O (2.2 eq.), MeCN, 25 °C, 18 h	55%	
6	Fe(ClO ₄) ₃ ·9H ₂ O (2.2 eq.), MeCN, 0 °C, 18 h	46%	
7	Fe(ClO ₄) ₃ ·9H ₂ O (2.2 eq.), MeCN, 50 °C, 18 h	40%	
8	Fe(ClO ₄) ₃ ·9H ₂ O (2.2 eq.), DCM, 25 °C, 18 h	no reaction	
9	FeCl ₃ ·6H ₂ O (2.2 eq.), MeCN, 25 °C, 18 h	trace	
10	Fe(acac) ₃ (2.2 eq.), MeCN, 25 °C, 18 h	no reaction	
Reaction were carried out at 100 mg scale of 18 at a concertration of 0.01 M.			

Synthesis of Janthinoid A

Summary

- In summary, the asymmetric, protecting-group-free synthesis of **Janthinoid A (1)** is accomplished in 14 steps starting from the commercially available geranylacetone.
- ➤ The enabling tandem reactions of Lewis-acid-mediated cationic-allene-ene cyclization and Fe(ClO₄)₃-mediated oxidative annulation provide novel ways for the synthesis of the *trans*-decalin-based aldehyde **11** and the oxabicyclo[3.2.1]octane core **19** in a regio- and stereoselective manner.

Strategy for Writing The First Paragraph

介绍DMOA衍生化合物

介绍Janthinoid A

➤ 3,5-Dimethylorsellinic acid (DMOA)-derived meroterpenoids, encompassing over 200 known compounds, have attracted attention due to their structural diversity and intriguing biological activities......

➢ In 2021, a novel DMOA-derived tri-nor-meroterpenoid Janthinoid A was isolated from the tabacumderived endophytic fungus Penicillium janthinellum TE-43 by Zhang and co-workers. Janthinoid A, characterized by a strained oxabicyclo[3.2.1]octane motif with four continuous quaternary stereogenic centers and hallmark embedded rigid lactone, exhibits in vivo antitumor activities against NSCLC cells A549......

Strategy for Writing The Last Paragraph

总结工作

强调亮点

提出展望

- In summary, the asymmetric, protecting-group-free synthesis of janthinoid A is accomplished for the first time in 14 steps starting from the commercially available geranylacetone.
- The enabling tandem reactions of Lewis-acid-mediated cationic-allene-ene cyclization and Fe(ClO₄)₃-mediated oxidative annulation provide novel ways for the synthesis of the *trans*-decalin-based aldehyde 11 and the oxabicyclo[3.2.1]-octane core 19 in a regio- and stereoselective manner.
- Application of the developed chemistry for the synthesis of other types of complex natural products is currently underway in our laboratories and will be reported in due course.

Representative Examples

- 3,5-Dimethylorsellinic acid-derived meroterpenoids, encompassing over 200 known compounds, have attracted attention due to their structural diversity and intriguing biological activities.(encompass, v. 包含,包括;围绕,包围;促成,实现)
- Retrosynthetically, we envisaged that the oxabicyclo[3.2.1]octane core of compound 1 could be constructed from ketoester C via a sequence of oxidation, double bond isomerization, 6-endo-trig radical cyclization, and intramolecular oxidative lactonization。 (envisage, v. 设想, 面对, 正视)
- With an efficient and scalable route to aldehyde 11, we started to explore the preparation of ketoester 18. (with an efficient and scalable route 通过有效且可放大的路线)

Acknowledgement

Thanks for Your Attention