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Introduction: Terpenoid (-terpene)
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Diterpenes, Sesterterpenes, Triterpenes ...
Hemiterpene HO
Menthol Farnesol
(Monoterpene) (Sesquiterpene)

m Constitute a large class of C,g-diterpenes

m Possess a bicyclo[3.2.1]octane core

Me T\/IeH

m Exhibit striking structural diversity and potent biological activity
1 ent-Kaurene




Introduction: Crokonoid A

m Embeds a bicyclo[3.2.1]octane moiety

m Incorporates an unprecedented tricyclo[4.4.1 .114]dodecane-2,11-dione core
2 Crokonoid A

m Features a novel 6/7/6/5 tetracyclic carbon framework

m Exhibits potent cytotoxicity against HL-60 and A549 cell lines

Only 6 mg isolated from 13 kg of Croton kongensis powder

Croton kongensis




Retrosynthetic Analysis
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Stage 1: Synthesis of Known Compound 8
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Stage 1: Synthesis of Known Compound 8
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21% yield from geraniol
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Stage 2: B-ring Expansion
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Stage 2: Synthetic Efforts Toward Compound 5

Pd,(dba);
Trost’'s DACH Ligand
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DCM, 0 °C

77% yield

O3, Sudan Red 7B

DCM/Pyridine, =78 °C LIHMDS, THF
then PPh3 then Ac,0O
o
Ozonolysis 3 steps, 30% vyield
14 15 5




Stage 2: B-ring Expansion
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Stage 3: D-ring Closure
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Stage 3: Synthesis of Compound 27
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NaBH4, MeOH, 0 °C

95% yield 84% yield
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TESCI, NEt3, KHMDS
THF, -78 °C

93% yield

1. DIBAL-H, DCM, -78 °C

2. LDA (21 equiv), TMSCHN,
THF/Toluene, -78 °C to rt

A

Colvin Alkyne Synthesis

91% vyield over 2 steps
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Colvin Rearrangement (Alkyne Synthesis)

Q" TES 1. DIBAL-H, DCM, -78 °C
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2. LDA (21 equiv), TMSCHN,
THF/Toluene, -78 °C to rt
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Colvin Alkyne Synthesis

91% vyield over 2 steps
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Stage 3: Synthetic Efforts Toward Compound 33
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then Ac,0, Pyridine, 4-PPY

0 63% yield
69% vyield
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Dicyclohexyl iodoborane Pd,(dba)s;, XantPhos
2,6-Di-t-butylpyridine K3PO4,>I oluene

then AcOH
Pd-Catalyzed
64% yield Cycloalkenylation
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Stage 3: Synthesis of Compound 33
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5 steps, 66% yield
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then AcOH, rt Pd-Catalyzed
Cycloalkenylation
83% yield
65% yield




Stage 4: Subsequent Modifications
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Stage 4: Synthesis of Compound 36
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Stage 4: Synthesis of Crokonoid A

Ac,0, Sc(OTf); Se0,

Y

Y

CH3;CN/DCM, 0 °C 1,4-Dioxane, 75 °C

Ti(O'Pr),, THF, 70 °C DMP, DCM, 0 °C

A
A

79% yield 3 steps, 44% yield

2 Crokonoid A 38




Summary

OMe Me Me 31 steps
* )\/\)\/\

Crokonoid A

Regioselective decarboxylative allylation of a 1,3-dienyl carbonate;
Domino sequence involving ozonolysis, intramolecular aldol reaction, and acetalization;

Palladium-catalyzed intramolecular cycloalkenylation of a ketone;

Sml,—~HMPA-mediated regio- and stereoselective reduction.

Forster, D.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2025, 147, 36090-36096



Writing Strategy

» First paragraph

B The ent-kauranoids, characterized by a bicyclo[3.2.1]octane core, constitute

a large class of C,y-diterpenes with striking structural diversity and potent

Species and Structure biological activity. Since the structural elucidation of ent-kaurene (1) in 1961,

over a thousand congeners have been identified, including highly oxidized,
rearranged, and C-C-bond-cleaved derivatives of the core tetracyclic
l scaffold. Following Ireland’s pioneering total synthesis of 1, the structural

complexity and dense functionalization of these molecules have continued to

inspire the development of increasingly sophisticated strategies.

Biological Activities B In 2020, Yue, Wang, and co-workers reported the isolation of crokonoid A (2)

from the aerial parts of Crofon kongensis. This compound features a novel
6/7/6/5 tetracyclic carbon framework incorporating an unprecedented
tricyclo[4.4.1.1"4]dodecane-2,11-dione core, which embeds a bicyclo[3.2.1]-

octane moiety, characteristic of ent-kaurene diterpenoids ...



Writing Strategy

» Last paragraph

Summary B We accomplished the total synthesis of crokonoid A, distinguished by its dually
bridged 6/7/6/5 fused tetracyclic carbon framework featuring an unprecedented tri-
l cyclo[4.4.1.1"4]dodecane-2,11-dione core.

_ B Our synthetic approach leverages four pivotal steps: (a) a regioselective decar-
Pivotal Steps

boxylative allylation of a 1,3-dienyl carbonate, furnishing an a-allyl-B,y-unsaturated

ketone; (b) a domino sequence involving ozonolysis, intramolecular aldol reaction,
and acetalization which is instrumental in assembling the bicyclo[4.3.1]decanedione
core from a fused ring system; (c) a palladium-catalyzed intramolecular cyclo-
alkenylation of a ketone to construct the bicyclo[3.3.1]octane-dione system; and (d)

Sml,~HMPA-mediated regio- and stereoselective reduction of the C14 ketone.



Representative Examples

® ... controlling the stereocenters at C7 and C14 was anticipated to be nontrivial. (adj. EERY)

® The diastereoselective reduction of the C14 ketone warrants further discussion. ({E8#—%11i8)

® ... distinguished by its dually bridged 6/7/6/5 fused tetracyclic carbon framework featuring an
unprecedented tricyclo[4.4.1.1"4]dodecane-2,11-dione core. (adv. WEih; MFENSHE)
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