
Literature Report 1

Total Synthesis of (+/-)-Crokonoid A

Reporter: Xin Zuo Checker: Xin-Yu Zhan

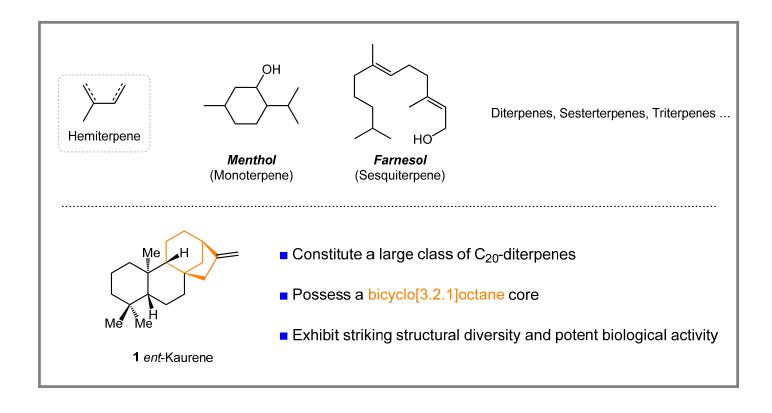
Forster, D.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2025, 147, 36090-36096

CV of Prof. Jieping Zhu (祝介平)

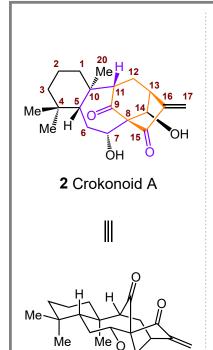
Background:

- 1980-1984 B.S., Hangzhou Normal University, P. R. China
- □ 1984-1987 M.S., Lanzhou University, P. R. China
- □ 1987-1991 Ph.D., Université Paris XI, France
- 1991-1992 Postdoctoral Researcher, Texas A & M University, USA
- □ 1992-2010 Director of Research, ICSN, CNRS, France
- 2010-present Professor, ISIC, EPFL, Switzerland

Research:


- Total Synthesis of Natural Products
- Metal-catalyzed Domino Process

- Multicomponent Reaction
- Catalytic Enantioselective Transformation

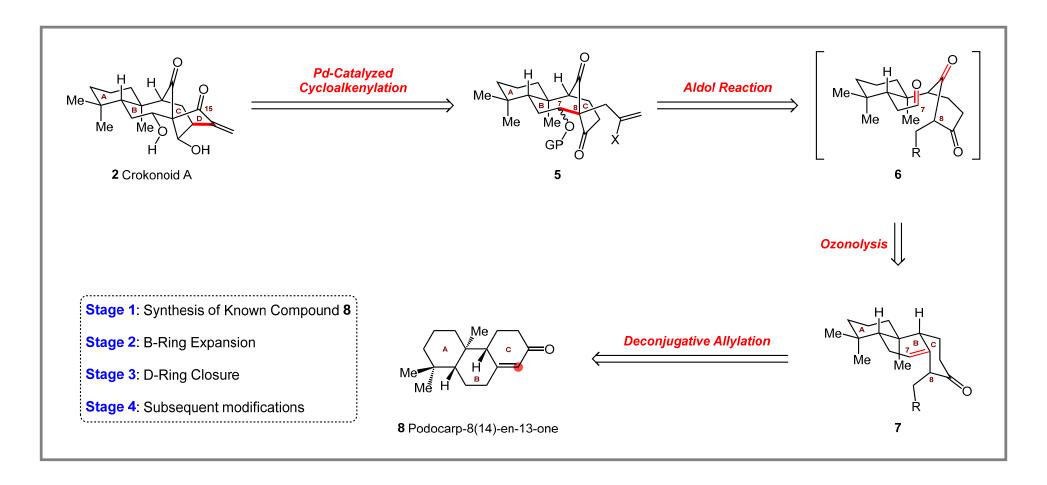

Contents

- 1 Introduction
- 2 Total Synthesis of (+/−)-Crokonoid A
- 3 Summary

Introduction: Terpenoid (-terpene)

Introduction: Crokonoid A

- Embeds a bicyclo[3.2.1]octane moiety
- Incorporates an unprecedented tricyclo[4.4.1.1^{1,4}]dodecane-2,11-dione core
- Features a novel 6/7/6/5 tetracyclic carbon framework
- Exhibits potent cytotoxicity against HL-60 and A549 cell lines


Only 6 mg isolated from 13 kg of Croton kongensis powder

Croton kongensis

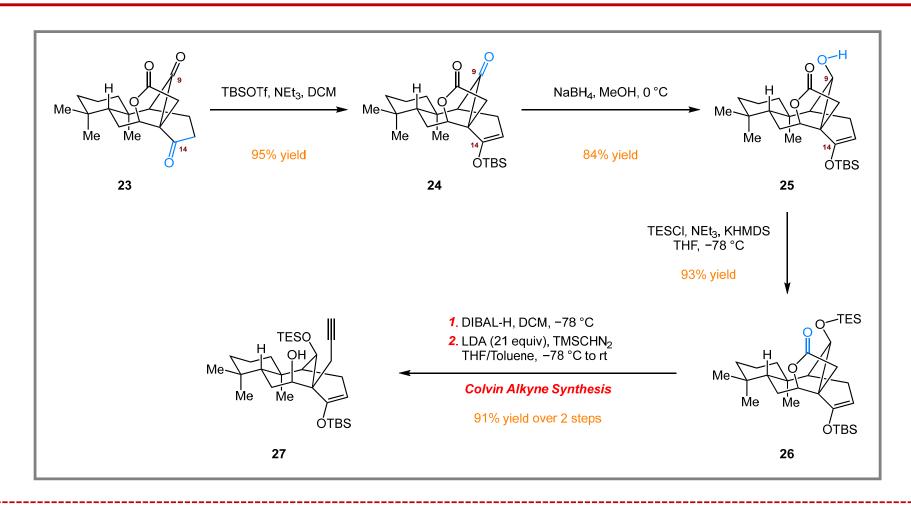
Fan, Y.-Y.; Shi, S.-Q.; Deng, G.-Z.; Liu, H.-C.; Xu, C.-H.; Ding, J.; Wang, G.-W.; Yue, J.-M. Org. Lett. 2020, 22, 929–933

Retrosynthetic Analysis

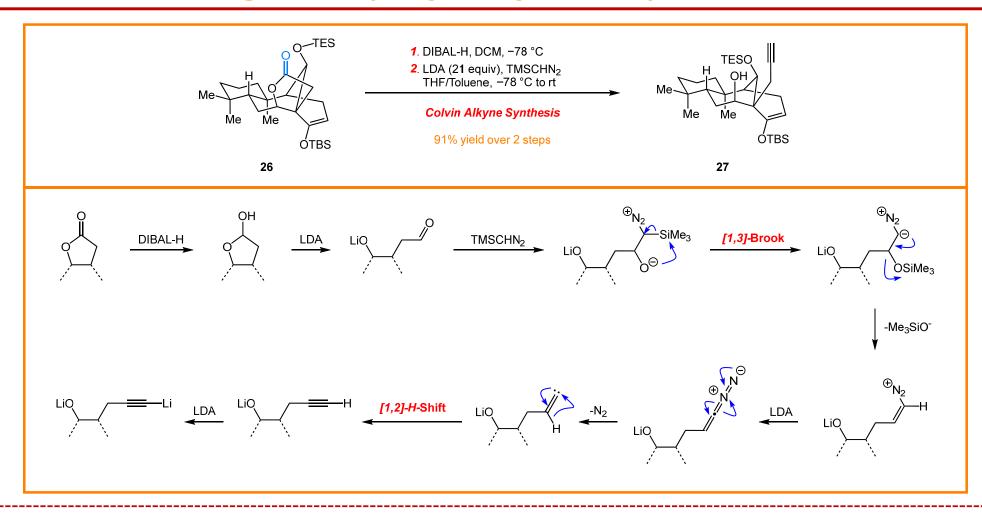
Stage 1: Synthesis of Known Compound 8

Stage 1: Synthesis of Known Compound 8

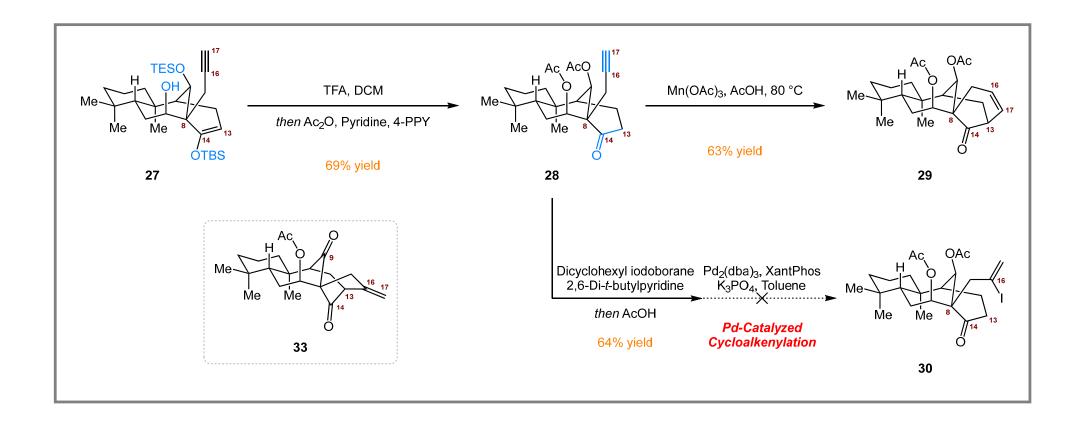
Stage 2: B-ring Expansion


$$= \frac{1}{Me} \frac{1}{Me}$$

Stage 2: Synthetic Efforts Toward Compound 5


Stage 2: B-ring Expansion

Stage 3: D-ring Closure


Stage 3: Synthesis of Compound 27

Colvin Rearrangement (Alkyne Synthesis)

Stage 3: Synthetic Efforts Toward Compound 33

Stage 3: Synthesis of Compound 33

Stage 4: Subsequent Modifications

Stage 4: Synthesis of Compound 36

Stage 4: Synthesis of Crokonoid A

Summary

- Regioselective decarboxylative allylation of a 1,3-dienyl carbonate;
- Domino sequence involving ozonolysis, intramolecular aldol reaction, and acetalization;
- Palladium-catalyzed intramolecular cycloalkenylation of a ketone;
- Sml₂-HMPA-mediated regio- and stereoselective reduction.

Forster, D.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2025, 147, 36090-36096

Writing Strategy

First paragraph

Species and Structure

Biological Activities

- The *ent*-kauranoids, characterized by a bicyclo[3.2.1]octane core, constitute a large class of C₂₀-diterpenes with striking structural diversity and potent biological activity. Since the structural elucidation of *ent*-kaurene (1) in 1961, over a thousand congeners have been identified, including highly oxidized, rearranged, and C-C-bond-cleaved derivatives of the core tetracyclic scaffold. Following Ireland's pioneering total synthesis of 1, the structural complexity and dense functionalization of these molecules have continued to inspire the development of increasingly sophisticated strategies.
- In 2020, Yue, Wang, and co-workers reported the isolation of crokonoid A (2) from the aerial parts of *Croton kongensis*. This compound features a novel 6/7/6/5 tetracyclic carbon framework incorporating an unprecedented tricyclo[4.4.1.1^{1,4}]dodecane-2,11-dione core, which embeds a bicyclo[3.2.1]-octane moiety, characteristic of *ent*-kaurene diterpenoids ...

Writing Strategy

Last paragraph

Summary

■ We accomplished the total synthesis of crokonoid A, distinguished by its dually bridged 6/7/6/5 fused tetracyclic carbon framework featuring an unprecedented tricyclo[4.4.1.1^{1,4}]dodecane-2,11-dione core.

Pivotal Steps

■ Our synthetic approach leverages four pivotal steps: (a) a regioselective decarboxylative allylation of a 1,3-dienyl carbonate, furnishing an α-allyl-β,γ-unsaturated ketone; (b) a domino sequence involving ozonolysis, intramolecular aldol reaction, and acetalization which is instrumental in assembling the bicyclo[4.3.1]decanedione core from a fused ring system; (c) a palladium-catalyzed intramolecular cycloalkenylation of a ketone to construct the bicyclo[3.3.1]octane-dione system; and (d) Sml₂-HMPA-mediated regio- and stereoselective reduction of the C14 ketone.

Representative Examples

- ... controlling the stereocenters at C7 and C14 was anticipated to be nontrivial. (adj. 重要的)
- The diastereoselective reduction of the C14 ketone warrants further discussion. (值得进一步讨论)
- ... distinguished by its dually bridged 6/7/6/5 fused tetracyclic carbon framework featuring an unprecedented tricyclo[4.4.1.1^{1,4}]dodecane-2,11-dione core. (*adv*. 双重地;从两个方面)

Acknowledgement

Thank You for Your Attention!