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An efficient kinetic resolution of ferroceno[c]isoquinolines was realized through chiral phosphoric acid-catalyzed
asymmetric transfer hydrogenation, affording the planar-chiral ferroceno[cJisoquinolines and planar-chiral tert-butyl ferroceno[c]-
isoquinoline-4(SH)-carboxylates with a selectivity factor of up to $8. The N-Boc group could be easily removed from the reductive
product. Moreover, the recovered materials could be transformed into various planar-chiral ferrocene-based bidentate ligands, which
were successfully applied in several asymmetric catalytic reactions with excellent yields and enantioselectivities.

Planar-chiral ferrocenes, Kinetic resolution, CPA catalysts, Asymmetric transfer hydrogenation

errocene was discovered and confirmed in the early applications. The most extensive and significant application of

1950s."” Owing to its characteristic structural and the planar-chiral ferrocenes lies in its role as a catalyst and
electronic properties, the ferrocene derivatives have been ligand in asymmetric catalysis.7’8 Regarded as one of the most
extensively utilized in organic synthesis, pharmaceuticals, and successful instances of applications in industrialization,”"’
material science (Figure 1).>7° It is of great importance to (R,S,)-xyliphos is a crucial ligand in iridium-catalyzed
develop effective methods for the preparation of ferrocenes, asymmetric hydrogenation for the synthesis of the chiral
especially for chiral ferrocene compounds, which play an pesticide (S)-metolachlor."’
important role not only in academic study but also in industrial Construction of the planar-chiral ferrocenes has always

attracted the continuous enthusiasm of chemists.'">™'* The
oA classic methods for the synthesis of planar-chiral ferrocenes
2

@ o o include: 1) diastereoselective directed ortho-metalation (DoM)
dpphz Ciahlar0 o : ° <:> zocme with the central chiral auxiliary (Scheme 1A right)">~"" and
(=

. . . . 18,1

& enantioselective DoM with chiral bases (Scheme 1A left),"®"’
o . 20 . .

- Ferroslectricity in Ferrocenyl Liquid Crystals 2? kinetic resolutlo.n o.f racemates,” and 3) sen.npreparatlve

JosiPhos Ligands Containing Planar-Chiral Ferrocenes high-performance liquid chromatography technique separa-

tion.”"** Even though stoichiometric amounts of chiral bases

H
MezNgN/CQQ or organolithium agents are required, some of these synthetic
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Figure 1. Selected planar-chiral ferrocene-based ligand, bioactive
compound, catalyst, and liquid crystal material.
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Scheme 1. Asymmetric Synthesis of Planar-Chiral Ferrocenes

A. Asymmetric Synthesis of Planar-Chiral Ferrocenes (Previous Works)

—4

Chiral Base, Solvent
Stoichiometric Chiral Bases

d‘ ® = Achiral o-Directing Group @. @ = Chiral o-Directing Group @.

=

B. Catalytic Asymmetric Synthesis of Planar-Chiral Ferrocenes (Previous Works)
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C. Organocatalytic Kinetic Resolution of Ferroceno[clisoquinolines through ATH (This Work)
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approaches are still employed for the synthesis of planar-chiral
ferrocene-based ligands and catalysts.

Catalytic desymmetrization has been recognized as an
effective strategy for constructing the planar-chiral ferrocenes;
however, relevant reports are still rare.”” >° Recently, the
vigorous growth of transition metal-catalyzed asymmetric C—
H functionalization has been ‘/\Iitnessced,26_28 and this strategy
has also made some progress in the construction of planar-
chiral ferrocenes. Since 1997, Siegel and Schmal reported the
pioneering work on the synthesis of planar chiral ferrocene
through copper-catalyzed enantioselective carbene C—H
insertion.”” Subsequently, an elegant method for the synthesis
of planar-chiral ferrocenes via palladium-catalyzed C—H
activation was achieved by You and co-workers.”” Over the
course of nearly three decades of development, catalytic
asymmetric synthesis of planar-chiral ferrocenes through
Pd 2 Rh 135 P Au Co,® Ni! Cu,?®
etc.” transition metal-catalyzed C—H bond activation/
functionalization has been widely reported, which has
significantly enriched the development of this field (Scheme
1B, C—H bond activation).*~*’ However, in most cases, this
strategy often requires installation and removal of the directing
group, which impedes further practical application. Con-
sequently, there is an urgent need to develop practical
methodologies for the catalytic asymmetric synthesis of
planar-chiral ferrocene derivatives.
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As is well-known, catalytic kinetic resolution of racemates is
one of the most classical and effective approaches for the
synthesis of optically active molecules, which enables the
convenient construction of central,** ™! axial, > planar,53”54 and
helical chirality.*® Catalytic kinetic resolution for the synthesis
of planar-chiral ferrocenes is also a promising and reliable
approach. In 1989, the Yamazaki group reported the first
enzymatic kinetic resolution of a planar-chiral ferrocene.’®
Since then, many enzyme-catalyzed systems have been applied
for the kinetic resolution of planar-chiral ferrocenes.””*”*
Compared with enzymatic kinetic resolution, nonenzymatic
kinetic resolution is achieved through the chiral catalysts,
including metal catalysts and organocatalysts. The first example
of metal-catalyzed kinetic resolution to synthesize planar chiral
ferrocenes was reported by the Moyano group in 2006.°” At
the same time, the Ogasawara group also initiated the
development of kinetic resolution through transition metal-
catalyzed asymmetric ring-closing metathesis for the con-
struction of planar-chiral metallocene compounds, including
planar-chiral ferrocenes.’”®" In 2009, the Rios and Moyano
group reported the organocatalytic kinetic resolution of a
planar-chiral ferrocene.” Up to now, certain progress has been
achieved in the synthesis of planar-chiral ferrocenes via
catalytic kinetic resolution (Scheme 1B, kinetic resolu-
tion).”>% Hence, it is of great significance to enrich and

https://doi.org/10.1021/jacsau.5c00698
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Table 1. Evaluation of Reaction Parameters”

—N — =N
o> N > (R)-CPA, HEH {o—=
@ Boc,0O, Solvent, T @
< [ ==
(+-)-1a (S)-1a
o o] R R
1 1 99 2
e oe N ¢¢ ol
|
H
R R
HEH-1: R'= 0Bu,R®=Me  CPA-1: R = 9-Anthracenyl
HEH-2: R" = O'Pr, R? = Me CPA-4: R = 9-Phenanthreny!
HEH-3:R'= OEt, R”Z=Me  CPA-5: R = 10-Phenyl-9-anthracenyl CPA-2 CPA-3
HEH-4: R = OEt, R? = Et CPA-6: R = 2,4,6-(Pr)3CgH, R = 9-Anthracenyl R = 9-Anthracenyl

entry solvent HEH CPA
1 toluene HEH-1 CPA-1
2 m-xylene HEH-1 CPA-1
3 mesitylene HEH-1 CPA-1
4 PhCF; HEH-1 CPA-1
s CH,Cl, HEH-1 CPA-1
6 THF HEH-1 CPA-1
7 mesitylene HEH-2 CPA-1
8 mesitylene HEH-3 CPA-1
9 mesitylene HEH-4 CPA-1
10 mesitylene HEH-1 CPA-2
11 mesitylene HEH-1 CPA-3
12 mesitylene HEH-1 CPA-4
13 mesitylene HEH-1 CPA-S
14 mesitylene HEH-1 CPA-6
15¢ mesitylene HEH-1 CPA-S
16" mesitylene HEH-1 CPA-5
17¢ mesitylene HEH-1 CPA-S
18" mesitylene HEH-1 CPA-S
19° mesitylene HEH-1 CPA-S

yield (
42
40
42
42
44
54
40
35
35
39
39
52
43
56
43
44
46
44
45

1a 2a
%) ee (%)° yield (%)° ee (%) 57
85.7 52 78.0 22.0
89.3 53 75.5 212
96.2 35 77.6 30.8
64.1 52 58.5 7.2
44.0 53 363 32
31.9 45 38.8 3.0
96.6 58 67.1 19.8
99.6 65 54.7 19.0
99.8 65 54.5 20.8
97.9 60 66.1 21.1
97.0 59 64.6 18.5
51.9 44 64.5 7.7
97.8 55 76.7 33.1
42.1 40 57.3 5.5
98.1 56 74.1 30.1
93.8 52 87.1 50.7
92.2 50 88.3 53.0
95.0 52 86.0 49.0
93.6 48 87.8 53.4

“Reaction conditions: (+)-1a (0.2 mmol), CPA (5.0 mol %), HEH (1.0 equiv), Boc,0 (1.0 equiv) Solvent (4.0 mL), SO °C, 11 h. “Yield was
measured by analysis of '"H NMR spectra, using mesitylene as the internal standard. “Determined by chiral HPLC. Calculated conversion and
selectivity factors: C = ee,,/(ee,, + ee,,), s = In[(1 — C)(1 — ee;,)]/In[(1 — C) (1 + ee;,)]. 40 °C."HEH (0.7 equiv). EMesiytlene (5.0 mL). "(R)-
CPA-5 (2.5 mol %). “The reaction conducted at 0.40 mmol scale. ‘/Isolated yield.

develop novel and efficient methods for the synthesis of planar
chiral ferrocenes via kinetic resolution.

Asymmetric (transfer) hydrogenation of heteroaromatics has
emerged as one of the most streamlined and atomically
efficient methodologies for the synthesis of chiral heterocyclic
compounds.”®~”° Our group has always been committed to the
homogeneous asymmetric hydrogenation of heteroaromatics
and has accomplished the concise and efficient synthesis of
multiple types of chiral heterocyclic compounds.”””* In 2016,
we achieved kinetic resolution of axially chiral biaryl
compounds with excellent selectivity factor (s up to 209) via
asymmetric transfer hydrogenation.”” Based on the diverse
structures and functions of planar-chiral ferrocenes, various
planar chiral ferrocene-fused heterocyclic molecules have been
developed as highly eflicient catalysts for asymmetric syn-
thesis.”* We envisaged synthesis of the ferrocene-fused
heterocyclic molecules through asymmetric transfer hydro-
genation of readily available racemic planar-chiral ferroceno-
[clisoquinolines. The key is to look for an effective method to
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hydrogenate aromatic compounds while also being able to
distinguish the chiral planarity of ferrocene-fused heterocyclics.
Herein, we report a chiral phosphoric acid (CPA)-catalyzed
asymmetric transfer hydrogenation of heteroaromatics for
kinetic resolution of the readily available ferroceno[c]-
isoquinolines, affording both configurationally planar-chiral
ferroceno| c]isoquinolines, with a kinetic resolution selectivity
factor as high as $8.1 (Scheme 1C).

Initially, the kinetic resolution of ferroceno[c]isoquinoline
(£)-1a was investigated via asymmetric transfer hydrogenation
using CPA as the catalyst and Hantzsch ester (HEH) as the
hydrogen source. In the presence of S mol % of (R)-CPA-1
and 1.0 equiv of HEH-1 in toluene at 50 °C, the chiral
hydrogenation product ferroceno[c]dihydroisoquinolines 2a’
and the recovered substrate 1a could be observed. However,
2a’ would rapidly return to substrate la due to the driving
force for dehydroaromatization, which was a challenge to
overcome. Previously, our group reported that ferrocene-based
regenerable and chiral NAD(P)H models FENAM contain

https://doi.org/10.1021/jacsau.5c00698
JACS Au 2025, 5, 3765-3774
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Scheme 2. Substrate Scope”
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§=298,12h s=35216h $=19.8,16h
B B
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e o (S S
me (o me &9 ®9
= = L= = = =
1e 2e 1f 2f 19 2g
47% yield, 83.6% ee 44% vyield, 86.0% ee 47% yield, 87.5% ee 49% vyield, 84.6% ee 44% vyield, 85.8% ee 49% vyield, 84.1% ee
$§=34.8,21h s§s=34.2,17h §=317,34h
Boc, Boc, Boc,
=N N =N N =N N
e S0 || e o< S owe
®9 F 9 F €9
< = == = = =¥
1 2h 1i i 1j 2j
40% yield, 94.1% ee  52% yield, 74.9% ee 45% vyield, 86.1% ee 48% vyield, 89.2% ee 40% yield, 94.9% ee 49% vyield, 73.7% ee
$=242,17h $=486,17h s=237,12h

Boc Boc
=N N —N N cl N Boc, ol
e - S e
Me—=r = Me Bt — &t By = —Et
1k 2k 11 2l 1m 2m
43% yield, 87.4% ee 48% yield, 89.4% ee 45% yield, 92.1% ee 51% yield, 89.3% ee 47% vyield, 86.9% ee 49% yield, 85.0% ee
s=51.2,22h s=58.1,23h s=34.7,47h

(HEH = 0.75 eq.)

(HEH = 0.80 eq.) (HEH = 0.80 eq.)

Boc, N Boc\N N BOC\N
= N - S
e S we - & = &
G : . By aynBu By o bn
1n 2n 10 20 1p 2p
35% yield, 94.8% ee 53% yield, 78.7% ee 42% yield, 91.3% ee 49% yield, 86.9% ee 48% vyield, 79.8% ee 47% yield, 86.5% ee
$=30.3,40h s=45520h $=233.6,29h

“Reaction conditions: Ferroceno[clisoquinolines (+)-1 (0.4 mmol), catalyst (R)-CPA-5 (5.0 mol %), HEH-1 (0.7 equiv), Boc,0 (1.0 equiv),
mesitylene (10.0 mL), SO °C. Isolated yields. The ee values were determined by chiral HPLC

structural units similar to dihydrophenanthridine, which have
been successfully applied in asymmetric reduction and
synthesis of the chiral heterocyclics.””~”’ Considering that
the substrate ferroceno[cJisoquinolines have a similar struc-
tural moiety, we wondered whether we could in situ protect the
product during hydrogenation by adding a protecting group so
that it could be stably separated. At the same time, removing
the protecting group could serve as a chiral NAD(P)H model.
To our delight, the desired product 2a was obtained by in situ
protection of the NH of hydrogenation product ferroceno[c]-
dihydroisoquinoline 2a’ with di-#-butyl dicarbonate in the
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system. The desired product 2a and the recovered substrate 1a
were obtained with 78.0% ee (53% yield) and 85.7% ee (42%
yield), respectively (Table 1, entry 1, s = 22.0). After solving
the separable issue, we officially began the exploration of the
optimal reaction parameters. Initially, the effect of different
solvents, such as m-xylene, mesitylene, benzotrifluoride
(PhCF;), dichloromethane (DCM), and tetrahydrofuran
(THF) on the reactivity and selectivity factors was evaluated
(entries 2—6). As a result, the selectivity factors of toluene, m-
xylene, and mesitylene were all greater than 20.0. The kinetic
resolution with DCM or THF exhibited poor selectivity factors

https://doi.org/10.1021/jacsau.5c00698
JACS Au 2025, 5, 3765-3774
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Scheme 3. Scale-up Synthesis, Derivatizations, and Applications
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53% yield, 98% ee 46% yield, 97% ee
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\ B(OH). Pd(OCOCFs3), (5 mol%)
.
oy - Q0 PRSS

(S)-3 (5 mol%) CO,Bn

N me N2 Pd(CH3CN),Cly (5 mol%)
+ )k N Me
N Ph” ~CO,Bn N

NaBArF, 5 A MS, DCE

(S)-4 (6 mol%) MeO,C.__CO,Me

j’ic/\ [PACI(C3Hs)] (2 mol%) I/\
b N py + CH,(CO,Me), N

BAS, LiOAc, Toluene

rac-12
g CLL
/ N~ Ph
H
FENAM (S)-1a (10 mol%) 15, 97% vyield, 62% ee
[Ru( p cymene)lplp CF3COOH
0.5 mol%) Mesitylene
65”
sol
FENAM-H
(entries 5—6). A survey of solvents indicated that mesitylene genation, and the effect of various Hantzsch esters (HEH) on
was the best choice, which displayed the highest selectivity the selectivity factors was investigated (entries 3, 7—9). It was
factor (entry 3, s = 30.8). As we know, Hantzsch esters (HEH) found that the steric hindrance of substituents on HEH has a
usually played a crucial role in asymmetric transfer hydro- great influence, and introducing a large steric effect group (¢
3769 https://doi.org/10.1021/jacsau.5c00698
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butyl) on R' would provide the best kinetic resolution
selectivity (entry 3, s = 30.8). However, the influence of R*
was marginal on kinetic resolution selectivity. Next, a series of
commercially available CPA catalysts were also examined
(entries 10—14), showing that the BINOL-derived catalysts
with a bulky 10-phenyl-9-anthracenyl group at 3,3’-positions
afforded the best kinetic resolution selectivity (entry 13, s =
33.1, eey, = 97.8%, ee,, = 76.7%). When the temperature was
decreased from 50 to 40 °C, the selectivity factor decreased
slightly to 30.1 (entries 13 and 15, s = 33.1 and 30.1). To our
delight, the selectivity factors of the reaction significantly
increased to 50.7, when the amounts of HEH-1 were reduced
from 1.0 to 0.7 equiv (entries 13 and 16, s = 33.1 and 50.7). In
addition, when the amount of mesitylene was increased from 4
to S mL, the s value slightly increased to 53.0 (entries 16 and
17, s = 50.7 and 53.0). Subsequently, decreasing the catalyst
loading by half to 2.5 mol %, the s value slightly dropped to
49.0 (entries 17 and 18, s = 53.0 and 49.0). However, in order
to ensure the robustness of the kinetic resolution, we still
employed catalyst loading to 5.0 mol %. When kinetic
resolution of the model substrate ferroceno[c]isoquinoline
(£)-1a occurred through the CPA-catalyzed asymmetric
transfer hydrogenation at 0.40 mmol under the optimal
reaction conditions, the desired product 2a and the recovered
substrate la were obtained with 93.6% ee (45% yield) and
87.8% ee (48% yield), respectively, and the selectivity factor
was 53.4 (entry 19). Therefore, the optimal reaction
parameters were established as mesitylene/HEH-1/(R)-CPA-
5/50 °C.

With the optimized conditions in hand, we began to explore
the substrate scope of kinetic resolution of ferroceno[c]-
isoquinolines 1 through asymmetric transfer hydrogenation,
and the results are summarized in Scheme 2. The approach was
capable of attaining the kinetic resolution for different kinds of
ferroceno|c]isoquinolines smoothly, and the s values were all
satisfactory (19.8—58.1). First, the reactions could be carried
out with good kinetic resolution selectivity (19.8—35.2), when
a methyl group was attached to a different position on the
benzene ring of the isoquinoline unit (1b—1e). Subsequently,
we examined the electronic effect of substituents on the
benzene ring. The substrates containing the electron-with-
drawing group, the halogen substituent, were well tolerated
and afforded the corresponding hydrogenation products (1f,
lg, 1h, 1i, s = 342, 31.7, 24.2, 48.6). Among them, the
substrate bearing a fluorine atom (1i) obtained a selectivity
factor of nearly S0. Besides, when a methoxy substituent was
introduced to the benzene ring of ferroceno[c]isoquinolines,
the selectivity factor was 23.7 (1j). The results suggested that
selectivity factors were insensitive to the electronic effect.
Moreover, ferroceno|clisoquinolines with various substituents
on the other Cp ring, including methyl (1k), ethyl (11), n-butyl
(10), and benzyl (1p), were investigated under the optimized
conditions with satisfactory selectivity factors (33.6—58.1). It is
important to highlight that the ethyl-substituted substrate
obtained an optimal selectivity factor in this work (1L, s =
58.1). Consequently, based on the substrate 11, we further
investigated two ferroceno|[c]isoquinoline substrates bearing
chlorine (Im) and methyl (1n), respectively, and the high
selectivity factors were observed (1m, 1n, s = 34.7, 30.3). The
absolute configuration of the recovered substrate 1g was
assigned to be (S) by one-step transformation to a known
compound and comparison of its specific optical rotation with
the value in the literature,® and the configuration of the
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desired product was (R) by analogue. The details are described
in the Supporting Information.

In order to demonstrate the synthetic utility of this
methodology, a 2.0 mmol scale was conducted using racemic
ferroceno[clisoquinolines la under the optimal reaction
conditions. The desired product 2a was isolated in 46% yield
with 87% ee, and the recovered substrate 1a was obtained in
43% yield with 94% ee without a loss of reactivity and
enantioselectivity (s = 51). Notably, the Boc protective group
could be readily removed in the presence of silica gel in
refluxing toluene without a loss of enantioselectivity (Scheme
3A). In this way, both configurational planar-chiral ferroceno-
[clisoquinolines could be obtained. This demonstrated that
our methodology has potential application in the facile
synthesis of chiral NAD(P)H models. Furthermore, consider-
ing that planar chiral ferrocenyl ligands are widely employed in
asymmetric catalytic reactions, various types of planar-chiral
ferrocene-based bidentate ligands could be easily prepared
from recovered substrate (S)-la (99% ee). As shown in
Scheme 3, starting from (S)-1a, the planar-chiral N,N-ligand
(S)-3 could be synthesized in 71% yield and 99% ee in the
presence of 2-lithiopyridine (in situ prepared). In the same
way, the planar-chiral N,P-ligand (S)-4 could be conveniently
synthesized from the recovered substrate (S)-1a (99% ee) with
o-lithiated diphenylphenylphosphine (in situ prepared). The
(S)-6, which may serve as a potential planar-chiral N,S-ligand
for some asymmetric transformations, was also synthesized
from (S)-S prepared from (S)-1a (99% ee) (Scheme 3B).
Fortunately, the enantioselectivities of all of the ligands
obtained above were maintained.

After synthesizing a series of chiral ligands, we applied them
to asymmetric catalytic reactions. To our delight, the planar-
chiral N,N-bidentate ligand (S)-3 could be applied in
palladium-catalyzed asymmetric arylation of N-tosylimine 7
with 2-naphthaleneboronic acid, and the corresponding
product 8 was obtained in 94% yield and 90% ee. Besides,
enantioselective palladium-catalyzed C—H functionalization of
indole 9 with benzyl 2-diazo-2-phenylacetate 10 could proceed
smoothly, affording the corresponding product in 90% yield
and 78% ee. When the planar-chiral N,P-ligand (S)-4 was
examined in palladium-catalyzed asymmetric allylic substitu-
tion, alkylation product 13 was obtained with an excellent yield
and moderate 63% enantioselectivity. In addition, planar-chiral
ferroceno| c]isoquinoline have a structural moiety similar to
that of the regenerable coenzyme NAD(P)H model FENAM,
so we applied it to the biomimetic asymmetric reduction
reaction of benzoxazinone. The desirable reductive product
dihydrobenzoxazinone 15 could be obtained with 97% yield
and 62% ee using trifluoroacetic acid as the transfer catalyst
and the homogeneous ruthenium complex as the regeneration
catalyst (Scheme 3C).

To further investigate whether the enantioselectivity
depends on the hydrogenation step, the N-Boc protection
step, or both, we carried out two control experiments (Scheme
4). The first control experiment involved the asymmetric
transfer hydrogenation of ferrocene[c]isoquinoline (+)-1a,
conducted in the absence of N-Boc protection of the reduction
product. The hydrogenation product 2a’ and the recovered
substrate la were obtained with 93.1% ee and 63.4% ee,
respectively, and the s value was 53.8 (Scheme 4A), which was
similar to the s value (53.4) under standard conditions. The
second control experiment was the N-Boc protection of the
hydrogenation product (+)-2a’ without HEH-1 under stand-
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Scheme 4. Control Experiments
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into four parts, namely, northeast (NE), southeast (SE),
southwest (SW), and northwest (NW). The Hantzsch ester is
located in zones NE and NW,; thus, zones SW and SE
accommodate the ferroceno[c]isoquinoline substrate, and zone
SW prefers to accommodate the ferroceno moieties during the

(Determined by its oxidation product)

ard conditions. The N-Boc protection product 2a and the
recovered ferroceno[c]dihydroisoquinoline 2a’ (ee value was
determined by its oxidation product) were obtained with
19.6% ee and 9.2% ee, respectively, and the s value was 1.6
(Scheme 4 B). The results of the control experiments implied
that the asymmetric transfer hydrogenation step plays the most
significant role in enantioselectivity control.

To further provide strong evidence for the origin of the
enantioselectivity, we carried out DFT calculations, the details
of which are described in the Supporting Information. With
(R)-CPA-S as the catalyst, the transfer hydrogenation between
HEH-1 and la from React can take place via a concerted
transition state TS1 (Figure 2), similar to the transfer

transfer hydrogenation. Interestingly, transfer hydrogenation
could also take place between (R)-2a’ and (S)-1a through
TS2, which has a barrier of 14.5 kcal/mol relative to (R)-Int2.
These results demonstrated that even though direct transfer
hydrogenation between HEH-1 and (S)-1a is very unfavorable
(S)-2a” could be produced using (R)-2a’ as the H, surrogate
and phosphoric acid as the catalyst.

It should be noted that the energy difference between TS2
and (R)-TS1 for the second transfer hydrogenation cycle is 2.8
kcal/mol (Figure S4), which explains the high stereoselectivity
shown in Scheme 4A.

For the following N-Boc protection, the calculations showed
that 2a’ could react with di-t-butyl dicarbonate directly via
TS3’ with a barrier of 19.4 kcal/mol (Figure SS). With the
assistance of phosphoric acid, the barrier decreases by several

. I 98 |
Hooo b
P Me N MQOVR‘O
HO BuO__ I ] !
- OBu !
CPA-5 OH e H
2 /
. _ o
> 7N
- N
@ (O\P,/,O/ I—;|
L — o '\ __.--H |
o
-~ 23.2 =\
(o Bk (S)-TS1 N
ol
/E'}O'-. \ M
O Me—N e
. N(ofau |
'.I BuO <ty
H, O_H’/
N
(R)-TS1
>
=
(S)-React
68 : j
“Pxg----H (R)-Int1 1 (R)-Int2 Q ZH H
&TOTNK QMo N (51 o €N
i Me—\ H (0] I'.I'BuO Z S Me Ny Me Q}P\r/ _.-H H o) O
HN?BuO (H H\N HO H 'BUOMO'BU o (o/\PT’O .
— -
S o © ﬁ“:’) N N
5 S &
= N = &
=

Figure 2. Gibbs energy profile (in kcal/mol) for the transfer hydrogenation of substrate (R/S)-1a catalyzed by CPA-S.
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kilocalories per mole (Figure S6). However, under catalytic
conditions, phosphoric acid is mainly involved in the transfer
hydrogenation step, as the total barrier for the uncatalyzed N-
Boc protection reaction (19.4 kcal/mol) is even lower than
that for the phosphoric acid catalyzed reaction ((R)-TS3, 24.2
kcal/mol relative to (R)-Intl, Figure S7). The completion of
the uncatalyzed and catalyzed N-Boc protection reactions
rationalizes the low stereoselectivity observed in Scheme 4B.

In summary, we have developed a new approach for the
synthesis of planar-chiral ferroceno[c]isoquinolines via kinetic
resolution by chiral phosphoric acid-catalyzed asymmetric
transfer hydrogenation with a kinetic resolution selectivity
factor as high as 58. To the best of our knowledge, this
methodology provides the first example of accessing planar-
chiral ferrocene-fused N-heteroaromatics via asymmetric
transfer hydrogenation. Moreover, the planar-chiral ferroceno-
[clisoquinolines synthesized through our kinetic resolution
platform are smoothly transformed into various novel ligands
and serve as chiral and regenerable coenzyme NAD(P)H
models in biomimetic asymmetric reduction. Our future
studies focus on this methodology toward kinetic resolution
of other planar chiral molecules and applications of the original
planar-chiral ferrocene ligands.

The data underlying this study are available in the published
article and its Supporting Information.

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.5c00698.
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