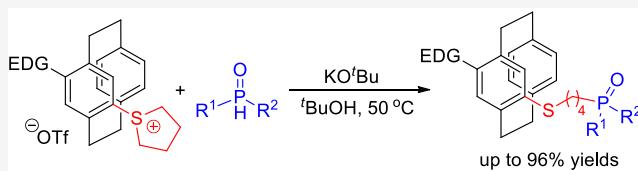


Aromatic C–H Thioalkylphosphinylation of [2.2]Paracyclophanes via Sulfonium Salts

Mingrui Li, Juan Ma, Liandi Wang, Kaikai Wu, Yong-Gui Zhou,* and Zhengkun Yu*

Cite This: *J. Org. Chem.* 2025, 90, 9593–9607

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Base-enabled aromatic C–H functionalization of [2.2]paracyclophanes was achieved by thioalkylphosphinylation via sulfonium salts. Cross-coupling between [2.2]paracyclophane tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonates and secondary phosphine oxides afforded thioalkylphosphinylated [2.2]-paracyclophane derivatives through selective C(sp³)–S bond cleavage of the arylsulfonium salts under mild conditions. The protocol features broad substrate scopes, good functional group tolerance from readily available reagents, and decent efficiency in up to 96% yields. The practicability of this method was demonstrated by scale-up preparation of the target products and their transformations to potential P,S-ligands for Suzuki and Sonogashira cross-coupling reactions.

INTRODUCTION

[2.2]Paracyclophane derivatives have attracted much interest in the areas of organic synthesis and materials chemistry over the past decade¹ (Figure 1). Although [2.2]paracyclophane

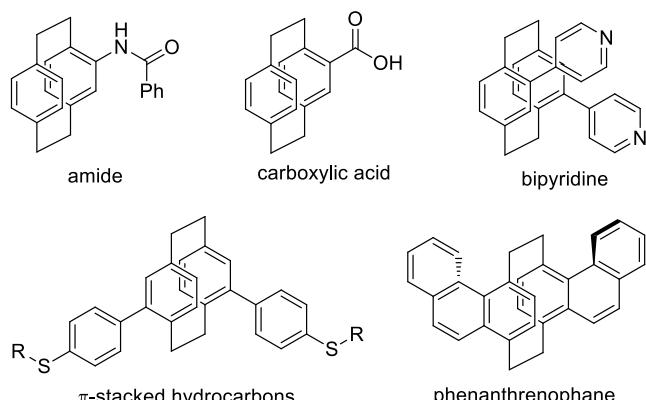


Figure 1. Selected examples of molecules containing a [2.2]-paracyclophane motif.

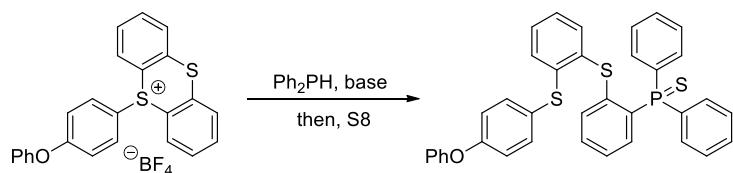
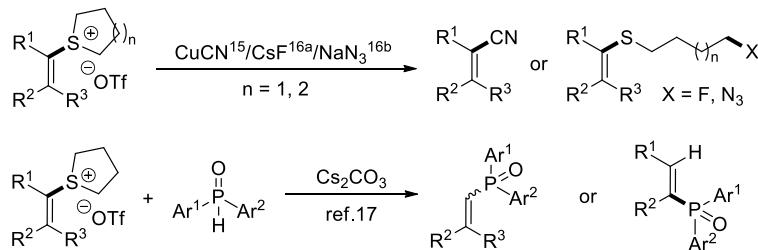
motif offers diverse modification sites based on its structural feature,² it usually remains stable and resistant to alterations by acids, bases, and light. In addition, racemization of [2.2]-paracyclophanes featuring planar chirality often occurs at elevated temperatures.³ Given the diversity of [2.2]-paracyclophane-based compounds, exploration of their chemical and physical properties is essential and has received more and more attention. Those [2.2]paracyclophanes with planar chirality can serve as ligands for asymmetric synthetic reactions.^{4,5} For example, Schafer et al. applied N,O-chelating ligands with a planar chiral [2.2]paracyclophane unit in

hydroamination,^{4a} and the Bräse group reported planar chiral [2.2]paracyclophane-based dirhodium paddlewheel complex-catalyzed cyclopropanation.^{4b}

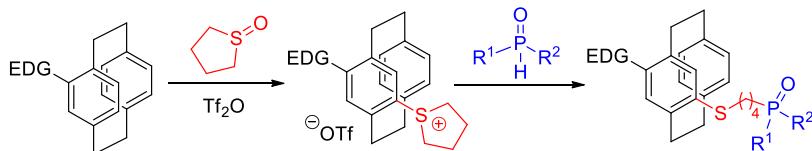
Heterodonor ligands containing pairs of strong and/or weak donor heteroatoms have been increasingly utilized in organic synthesis due to their distinctive electronic and steric properties.⁶ Among the heterodonor ligands, phosphorus–nitrogen ligands have been extensively investigated and applied,^{7,8} while phosphorus-thioether ligands have been paid much less attention. Significant electronic disparity exists between phosphorus and sulfur atoms that phosphorus-thioethers have been demonstrated as potential diverse ligands.^{9–11} However, [2.2]paracyclophane-based phosphorus-thioether ligands have not yet been reported. In order to functionalize the [2.2]paracyclophane skeleton, [2.2]-paracyclophanes are usually pretreated with liquid bromine or initially functionalized under harsh conditions, followed by further multistep modification processes.¹²

Recently, cyclic sulfonium salts have been shown to have the potential for selective C–S bond cleavage to access diverse organic compounds.¹³ In 2021, Huang et al. reported an approach to access ring-opening phosphorus-thioether products from the reaction of arylthianthrenium salts with diarylphosphines via C(sp²)–P cross-coupling¹⁴ (Scheme 1a). During our continuous investigation of alkylsulfonium salts, we successfully realized olefinic C–H functionalization

Received: May 6, 2025



Revised: June 12, 2025

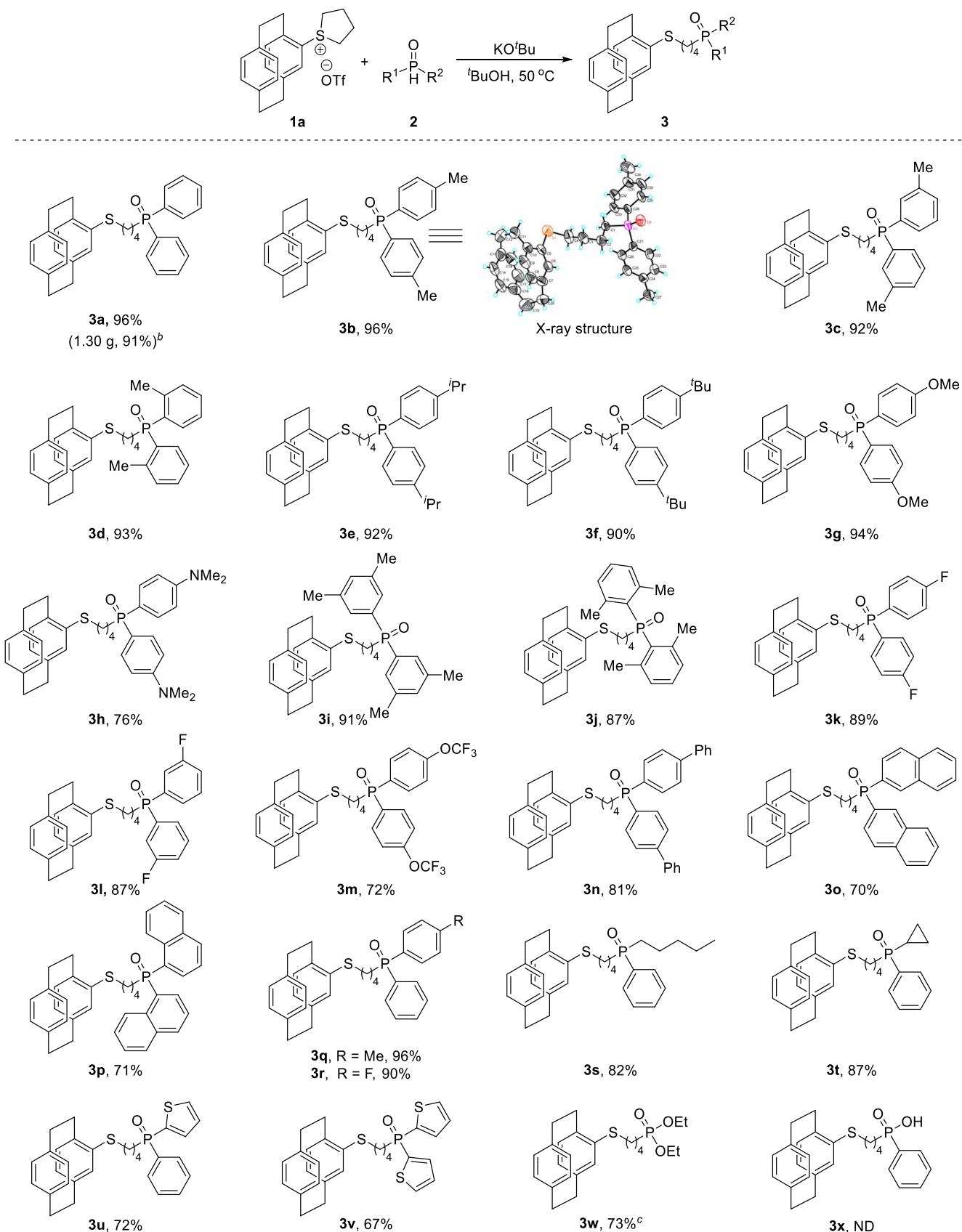
Accepted: June 20, 2025


Published: June 27, 2025

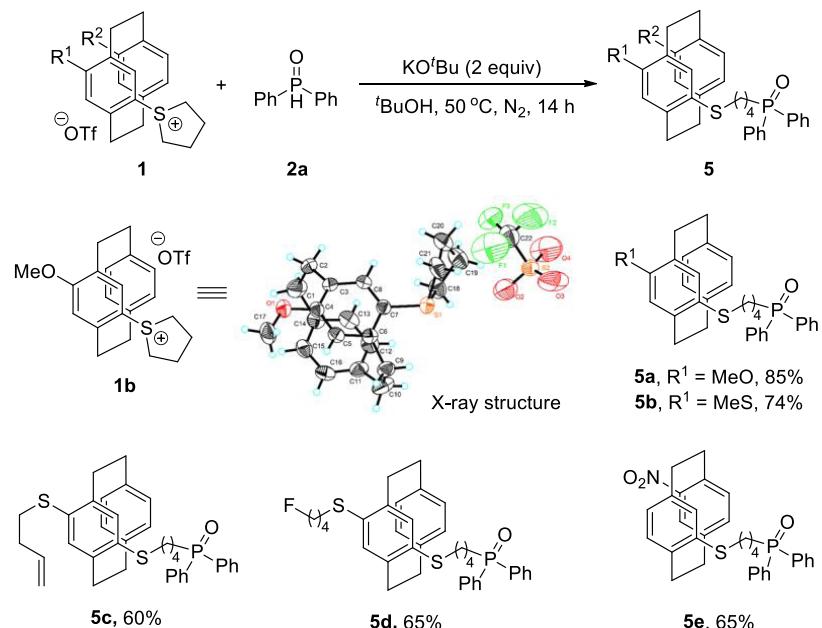
Scheme 1. C–H Functionalization Strategies via Sulfonium Salts

(a) Phosphinative ring-opening of arylthianthrenium salt¹⁴(b) Our previous work: olefinic C–H functionalization *via* sulfonium salts

(c) This work: thioalkylphosphinylation of arylsulfonium salts


Table 1. Optimization of Reaction Conditions^a

entry	1a/2a	base	solvent	yield ^b (%)	
				3a	4
1	1:1.1	Cs ₂ CO ₃	EtOAc	61	ND
2	1:1.1	KO <i>t</i> Bu	EtOAc	66	ND
3	1:1.1	KO <i>t</i> Bu	MeCN	38	<5
4	1:1.1	KO <i>t</i> Bu	dioxane	70	<5
5	1:1.1	KO <i>t</i> Bu	<i>t</i> PrOH	74	<5
6	1:1.1	KO <i>t</i> Bu	<i>t</i> BuOH	90	<5
7 ^c	1:1.1	KO <i>t</i> Bu	<i>t</i> BuOH	94	<5
8 ^d	1:1.1	KO <i>t</i> Bu	<i>t</i> BuOH	94	<5
9 ^c	1:1.2	KO <i>t</i> Bu	<i>t</i> BuOH	96	trace
10 ^d	1:1.2	KO <i>t</i> Bu	<i>t</i> BuOH	96	trace
11 ^{d,e}	1:1.2	KO <i>t</i> Bu	<i>t</i> BuOH	98 (96) ^f	trace
12	1:1.2		<i>t</i> BuOH	ND	ND
13 ^d	1/0	KO <i>t</i> Bu	<i>t</i> BuOH		(98) ^f


^aConditions: 1a (0.20 mmol), 2a (0.22 mmol), base (0.40 mmol), solvent (2 mL), 28 °C, 12 h, N₂. ^bDetermined by ¹H NMR analysis by using MeNO₂ as the internal standard. ^c40 °C. ^d50 °C. ^e14 h. ^fIsolated yield given in parentheses. ND = Not detected.

through palladium-catalyzed cyanation¹⁵ and thioalkylfluorination,^{16a} base-promoted thioalkylazidation^{16b} and phosphinylation¹⁷ via selective C(sp²)–S or C(sp³)–S bond cleavage of these alkenylsulfonium salts generated from the interrupted Pummerer reaction of the olefinic C–H substrates (Scheme 1b). Furthermore, phosphine oxides, serving as nucleophilic phosphorus-based reagents with favorable reactivity, have been

increasingly utilized in organic synthesis.¹⁸ Thus, we reasonably envisioned that [2.2]paracyclophanes might be initially converted into arylsulfonium salts to enhance their reactivities and then undergo further selective transformations. Herein, we disclose a base-promoted selective thioalkylphosphinylation protocol of [2.2]paracyclophane sulfonium salts to

Scheme 2. Scope of Secondary Phosphine Oxides (2)^a

^aConditions: **1a** (0.30 mmol), **2** (0.36 mmol), KO^tBu (0.60 mmol), ^tBuOH (3 mL), 50 °C, 14 h, N₂. Yields refer to the isolated products. ^b**1a** (3.0 mmol), **2a** (3.6 mmol), KO^tBu (6.0 mmol). ^cK₃PO₄ (0.60 mmol) instead of KO^tBu as the base, THF (3 mL) instead of ^tBuOH as the solvent.

Scheme 3. Scope of [2.2]Paracyclophane Sulfonium Salts (1)^a

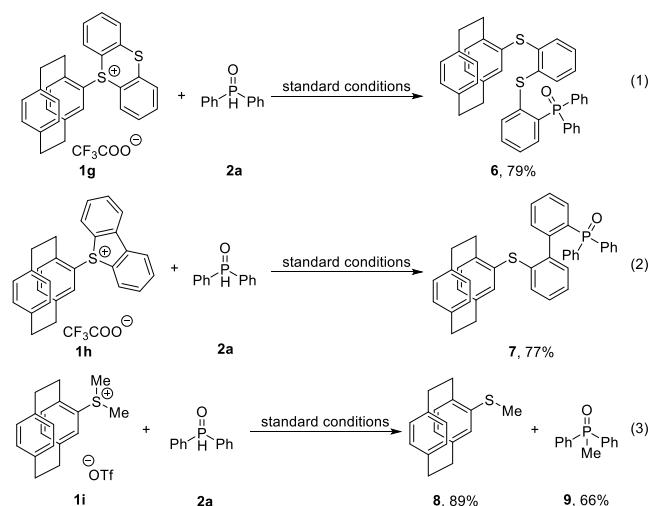
^aConditions: 1 (0.30 mmol), 2a (0.36 mmol), KOtBu (0.60 mmol), tBuOH (3 mL), N₂, 50 °C, 14 h. Yields refer to the isolated products.

achieve aromatic C–H functionalization of the [2.2]-paracyclophane skeleton under mild conditions (Scheme 1c).

RESULTS AND DISCUSSION

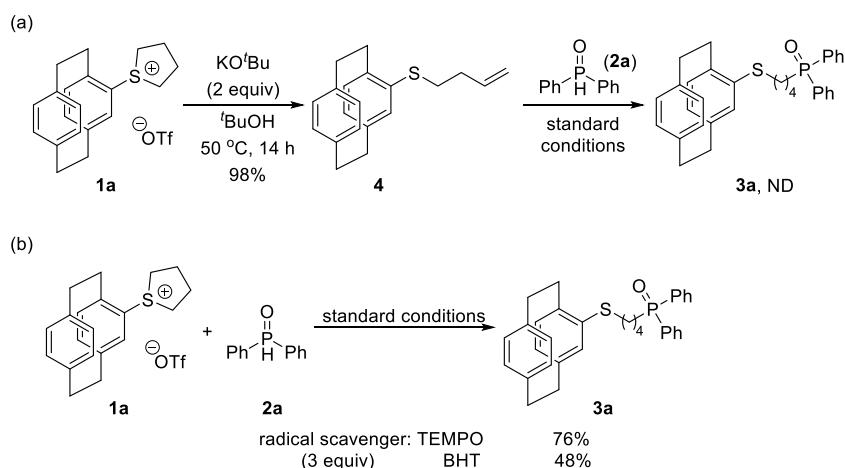
Arylsulfonium salt 1-([2.2]paracyclophane) tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate (**1a**) was prepared by the interrupted Pummerer reaction of [2.2]paracyclophane, tetrahydrothiophene sulfoxide, and Tf₂O. Initially, the reaction of **1a** and diphenylphosphine oxide (**2a**) was conducted to screen the reaction conditions (Table 1). In the presence of Cs₂CO₃ (2 equiv) as base in EtOAc at ambient temperature, the reaction of **1a** and **2a** in a 1:1.1 molar ratio proceeded to generate the ring-opening phosphinylation product **3a** in 61% yield within 12 h through the selective C(sp³)–S bond cleavage of **1a** with the C(sp²)–S bond remaining unchanged (Table 1, entry 1). CsF, KOH, K₃PO₄, NaOMe, and Na₂CO₃ could also act as the base promoters, but potassium *tert*-butoxide behaved more efficiently than them, and *tert*-butyl alcohol turned out to be the suitable reaction medium among the screened solvents such as ethyl acetate, acetonitrile, 1,4-dioxane, isopropanol, etc. (Table 1, entries 2–6, see the SI for details). Elevating the temperature to 40–50 °C enhanced the reaction yield to 94% (Table 1, entries 7 and 8). Increasing the loading of **2a** further improved the reaction efficiency to 96% yield (Table 1, entries 9 and 10). The best result was achieved over a period of 14 h, affording the target product **3a** in 96% isolated yield (Table 1, entry 11). In the absence of a base, the reaction did not occur (Table 1, entry 12). Notably, a ring-opening olefination side product **4** was observed during the reaction (Table 1, entries 3–11), and it was formed in 98% yield by using 2 equiv of base in the absence of nucleophile **2a** (Table 1, entry 13).

Under optimal conditions, the scope of secondary phosphine oxides **2** was explored (Scheme 2). To achieve a broad generality, 50 °C was applied as the reaction temperature. On a 0.3 mmol scale of **1a**, the target product **3a** was also obtained in 96% yield. The gram-scale preparation gave **3a** in 91% yield,

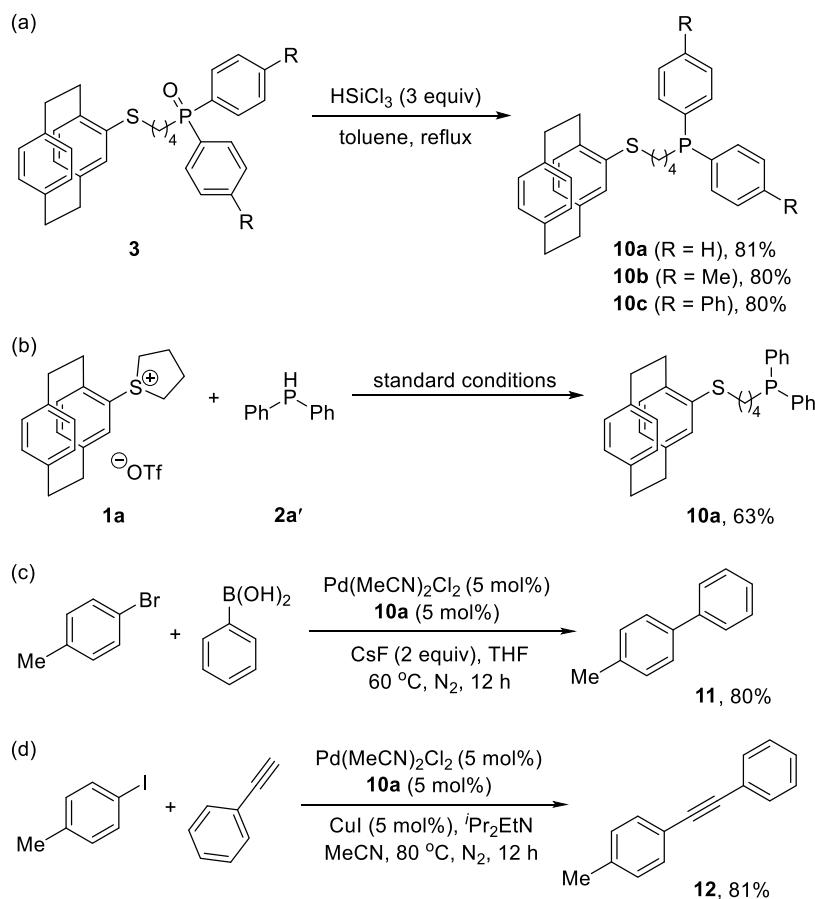

demonstrating the good applicability of the synthetic protocol. Electron-donating substituents such as *p*-, *m*-, and *o*-methyls and isopropyl on the aryl moieties of diarylphosphine oxides (**2**) exhibited no obvious negative impact on the reaction efficiency, leading to **3b**–**3e** in 92–96% yields. *p*-*tert*-Butyl and methoxy slightly decreased the yields to 90–94% for **3f** and **3g**, respectively. Unexpectedly, the *p*-dimethylamino group obviously lessened the yield of **3h** (76%), presumably due to both its steric and electronic effects. The diarylphosphine oxides bearing 3,5- and 2,6-dimethyls also efficiently reacted with **1a** to produce the target products **3i** (91%) and **3j** (87%), and electron-withdrawing *p*- and *m*-fluoro groups behaved in a similar manner to facilitate the formation of **3k** (89%) and **3l** (87%). *p*-Trifluoromethoxy deteriorated the yield of **3m** (72%) due to its possible negative steric and electronic effects. The negative steric impact from *p*-phenyl, *p*-(2-naphthyl), and *p*-(1-naphthyl) was observed, furnishing the target products **3n**–**3p** in 70–81%. The unsymmetrical diarylphosphine oxides also efficiently reacted with **1a** to afford products **3q** (96%) from *p*-tolylphenyl-phosphine oxide and **3r** (90%) from *p*-fluorophenylphenyl-phosphine oxide, respectively, and the electronic effect of the substituents was not obvious. Arylalkylphosphine oxides also affected the transformation, and the alkyls differentiated the reaction efficiency to result in **3s** (82%) and **3t** (87%) from *n*-pentyl- and cyclopropyl-based phenylphosphine oxides, respectively. Diethylphosphine oxide was tried as the P(O)–H substrate, but a detectable amount of the target product was not observed from its reaction with **1a** under the reaction conditions. In our previous report on the phosphinylation of alkenylsulfonium salts with secondary phosphine oxides,¹⁷ 1-(2,2-diphenylvinyl)-tetrahydro-1*H*-thiophen-1-ium triflate smoothly reacted with di(cyclohexyl)-phosphine oxide at ambient temperature to form the desired phosphinylated product. These results have suggested that secondary phosphine oxides bearing one or two aryls or two alkyls with a relatively strong electron-donating capability on the phosphorus atom are suitable nucleophilic P(O)–H

substrates for the phosphinylation process. Arylheteroaryl and di(heteroaryl)phosphine oxides reacted much less efficiently than their diaryl analogs, and treatment of heteroaryl 1-thienyl-based phosphine oxides with **1a** under the standard conditions only gave the target products **3u** (72%) and **3v** (67%) in moderate yields. The H-phosphite substrate, that is, diethyl phosphite, could also undergo the reaction with **1a** under the modified conditions by means of K_3PO_4 as the base and THF as the solvent, yielding **3w** in 73% yield. However, phenyl-phosphinic acid could not perform the reaction with **1a** under the same conditions to form the desired product **3x**. It is noteworthy that the target products **3** were further identified by the X-ray crystallographic analysis of the molecular structure of phosphorus-thioether compound **3b** (see the Supporting Information for details).

Next, the scope of [2.2]paracyclophe sulfonium salts was investigated (Scheme 3). It should be noted that the interrupted Pummerer reaction of substituted [2.2]-paracyclopheanes usually occurred on the relatively electron-rich aryl moiety of the [2.2]paracyclophe skeleton, which was confirmed by the X-ray crystallographic molecular structure of methoxy-substituted [2.2]paracyclophe sulfonium salt **1b** (see the SI for details). For [2.2]paracyclopheanes bearing an electron-donating group (EDG) on one of the aryl moieties, the interrupted Pummerer reaction site resided at the *para*-position relative to the electron-donating substituent to form the corresponding arylsulfonium salts. When the [2.2]paracyclophe skeleton bears an electron-withdrawing group (EWG), the interrupted Pummerer reaction preferentially occurs at the *pseudo para*-position of the other aryl moiety. Substituted [2.2]paracyclophe sulfonium salts (**1b**–**1f**) also effectively reacted with diphenylphosphine oxide (**2a**) under the standard conditions. In the case of methoxy and methylthio as the substituents, the target products **5a** (85%) and **5b** (74%) were efficiently obtained, respectively, whereas alkenyl or fluoro-functionalized alkylthio substituents deteriorated the product yields for **5c** (60%) and **5d** (65%). Notably, the electron-withdrawing group nitro-substituted [2.2]-paracyclophe tetrahydro-1*H*-thiophen-1-ium salt underwent the same ring-opening alkylphosphinylation with **2a** to give the desired product **5e** in 65% yield. Efforts were also made to synthesize other [2.2]paracyclophe sulfonium salts bearing an electron-withdrawing group or halogen functionality. In the cases of using [2.2]paracyclopheanes substituted by a CO_2Me


or bromo group or a *pseudo para*-dibromo functionality on the (di)aryl backbone, the interrupted Pummerer reactions with tetrahydrothiophene sulfoxide and Tf_2O were complicated and no target sulfonium salts could be isolated. With a formyl (CHO) as the substituent on one of the aryl motifs of [2.2]paracyclophe, the interrupted Pummerer reaction formed four kinds of inseparable sulfonium salts which were not successfully applied in the phosphinylation transformation. It should be noted that electron-donating groups on the (di)aryl backbone of [2.2]paracyclophe facilitate the interrupted Pummerer reaction to form the investigated [2.2]paracyclophe sulfonium salts.

Other sulfurizing reagents such as thianthrene sulfoxide (TTO), dibenzothiophene sulfoxide (DBTO), and dimethyl



sulfoxide (DMSO) were also used to prepare the corresponding [2.2]paracyclophe sulfonium salts for comparative study. The reaction of arylthianthrenium salt **1g** with diphenylphosphine oxide (**2a**) gave phosphorus-functionalized diarylthioether **6** (79%) via selective $C(sp^2)-S$ bond cleavage of the thianthrene ring under the standard conditions, forming an aromatic $C(sp^2)-P$ bond [eq 1]. A similar reaction occurred for dibenzothiophen-1-ium salt **1h** with **2a** to afford the target product **7** (77%) [eq 2]. NMR characterization revealed the simultaneous presence of both planar and axial chiralities in the product. The observed axial chirality is attributed to restricted

Scheme 4. Control Experiments

Scheme 5. Derivatization and Application of the Thioalkylphosphinylation Products

rotation of the biphenyl moiety, resulting from steric hindrance between two bulky substituents at the α -positions, which creates a stable chiral axis. It is noteworthy that compound 7 could not be accessed in a decent yield under palladium catalysis.¹⁹ Treatment of arylidimethyl sulfonium salt 1i with 2a resulted in the methyl-elimination product 8 (89%) as well as methyldiphenylphosphine oxide 9 (66%) as the methyl transfer product via aliphatic C(sp³)–S bond cleavage [eq 3].

In order to gain insight into the reaction mechanism, control experiments were performed (Scheme 4). In the absence of the P–H nucleophile and under the basic conditions, [2.2]-paracyclophane sulfonium salt 1a underwent base-promoted ring-opening olefination to form product 4 in 98% isolated yield (Table 1). Treatment of compound 4 with diphenylphosphine oxide (2a) under the standard conditions failed to give the target product 3a, and no other reaction was observed, revealing that the olefination product 4 is not the intermediate for the investigated transformation (Scheme 4a). It was found that in the presence of a radical scavenger (3 equiv) such as 2,2,6,6-tetramethyl-1-piperidyloxy (TEMPO) or 2,6-di-*tert*-butyl-4-methyl-phenol (BHT), the reaction of sulfonium salt 1a and 2a afforded the target product 3a in 48–76% yields under the standard conditions (Scheme 4b). These radical-trapping reagents could not inhibit the ring-opening thioalkylphosphinylation process, excluding a radical pathway. Thus, we reasonably propose that this reaction is a nucleophilic substitution process of the secondary phosphine oxide anion generated *in situ* by deprotonation of the H–phosphine oxide 2a in the presence of a base, which proceeds through the

C(sp³)–S bond cleavage of the cycloalkylsulfonium ring of 1a.¹⁷

Then, the derivatization and application of the resultant thioalkylphosphinylation products from [2.2]paracyclophanes were carried out (Scheme 5). [2.2]Paracyclophane-based P(V)-thioethers 3 could be reduced to the corresponding thioalkyl diarylphosphine 10a–10c in 80–81% yields with HSiCl₃ as the reductant (Scheme 5a). It should be noted that [2.2]paracyclophane sulfonium salt 1a could also be reacted with diphenylphosphine (HPPH₂) to form the corresponding P(III) product 10a in a moderate yield (63%) (Scheme 5b), but the former two-step phosphinylation/reduction method avoids use of highly toxic P–H reagent and can demonstrate a higher overall efficiency. Compounds 10 are potential bidentate ligands, and their applicability as ligands was exemplified by 10a in palladium-catalyzed Suzuki–Miyaura cross-coupling reaction of *p*-tolyl bromide and phenylboronic acid, and copper-mediated Sonogashira reaction of *p*-methyliodobenzene with phenylacetylene (Scheme 5c,d), respectively. In both cases, compound 10a acted as a suitable ligand to promote catalytic transformations. PPh₃ was applied as the ligand in the Suzuki–Miyaura cross-coupling reaction of *p*-tolyl bromide and phenylboronic acid for a comparison study. In the presence of 5 mol % PPh₃ under the same conditions, the reaction showed a 72% yield for the target product 11 (Scheme 5c). This result has demonstrated the higher efficiency of the [2.2]paracyclophane-based thioalkyl diarylphosphine ligand (10a) than the conventional mono-phosphine ligand.

In conclusion, base-promoted C–H thioalkylphosphinylation of [2.2]paracyclophanes was achieved via selective C–S bond cleavage of their arylsulfonium salts under mild conditions. The resultant [2.2]paracyclophane-based phosphorus-thioether products could be applied as the potential P,S-ligands for catalytic transformations. This work offers a mild and concise functionalization protocol for [2.2]-paracyclophanes.

EXPERIMENTAL SECTION

General Considerations. The solvents were dried and distilled prior to use by literature methods. ^1H and $^{13}\text{C}\{\text{H}\}$ NMR spectra were recorded on a 400 MHz spectrometer, and all chemical shift values refer to CDCl_3 (δ (^1H), 7.26 ppm; δ (^{13}C), 77.16 ppm). $^{19}\text{F}\{\text{H}\}$ and $^{31}\text{P}\{\text{H}\}$ NMR spectra are not calibrated by an internal reference. For reactions that require heating, the heat source was an oil bath. All of the melting points were measured and uncorrected. The X-ray crystallographic analysis was achieved by the Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Analytical TLC plates were viewed with UV light (254 nm). Column chromatographic purifications were performed on an SDZF silica gel 160. The starting chemical reagents were purchased from commercial sources and used as received, unless otherwise indicated. Known compounds **2a–c**, **2f**, **2g**, **2l**, **2n**, **2o**, and **2q**,²⁰ **2d**, **2i**, **2k**, and **2m**,²¹ **2e** and **2u**,²² **2h**,²³ **2j**,²⁴ **2p**, **2r**, and **2v**,²⁵ **2s**,²⁶ **2t**,²⁷ **9**,²⁸ **11**,²⁹ and **12**,³⁰ were prepared by the literature procedures, and their spectroscopic features are in good agreement with those reported in the literature.

A Typical Procedure for the Preparation of **1a–f, **1i**. Synthesis of 1-([2.2]Paracyclophane) Tetrahydro-1*H*-thiophen-1-*ium* Trifluoromethanesulfonate (**1a**).** A solution of [2.2]paracyclophane (2.08 g, 10 mmol) and tetrahydrothiophene 1-oxide (1.15 g, 11 mmol) in CH_2Cl_2 (20 mL) was cooled to $-78\text{ }^\circ\text{C}$ in a dry ice-acetone bath under a nitrogen atmosphere, and Tf_2O (1.1 equiv) was then added dropwise. The reaction mixture was stirred at $-78\text{ }^\circ\text{C}$ for 15 min, then allowed to warm up to ambient temperature. The stirring was continued for 24 h at ambient temperature. After [2.2]-paracyclophane was completely consumed by TLC monitoring on silica gel, the resultant mixture was evaporated to remove all the volatiles under reduced pressure. The residue was purified by silica gel column chromatography (eluent: CH_2Cl_2 /methanol = 20:1, v/v), affording **1a** (3.51 g, 79%) as a white solid.

1-(1,4-Dibenzenacyclohexaphane-1²-yl)tetrahydro-1*H*-thiophen-1-*ium* Trifluoromethanesulfonate (1a**).** Following the general procedure, compound **1a** was obtained by column chromatography on silica gel [eluent: CH_2Cl_2 /MeOH = 20:1, v/v]. 3.51 g, 79% yield, white solid, m.p.: 146–147 $^\circ\text{C}$. ^1H NMR (400 MHz, CDCl_3) δ 6.89 (d, J = 1.2 Hz, 1H), 6.79 (dd, J = 7.9, 1.3 Hz, 1H), 6.68 (d, J = 7.9 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.54 (m, 3H), 4.23 (t, 2H), 4.01 (ddd, J = 12.5, 8.2, 7.0 Hz, 1H), 3.64 (ddd, J = 12.8, 9.0, 3.3 Hz, 1H), 3.25 (m, 4H), 3.07 (m, 4H), 2.58 (m, 1H), 2.47 (m, 1H), 2.34 (m, 1H), 2.17 (m, 1H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 144.8, 141.9, 140.3, 138.8, 138.7, 137.1, 133.8, 133.5, 132.4, 130.9, 130.4, 125.5, 121.05 (q, J = 320.7 Hz), 51.4, 43.0, 35.1, 34.8, 34.6, 33.8, 29.4, 28.5. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ –78.02. HRMS (ESI-TOF) m/z : [M-OTf]⁺ calcd for $\text{C}_{20}\text{H}_{23}\text{S}$: 295.1515; found: 295.1514.

1-(1²-Methoxy-1,4(1,4-dibenzenacyclohexaphane-1²-yl)-tetrahydro-1*H*-thiophen-1-*ium* Trifluoromethanesulfonate (1b**).** Following the general procedure, compound **1b** was obtained by column chromatography on silica gel [eluent: CH_2Cl_2 /MeOH = 50:1, v/v]. 1.15 g, 61% yield, yellow viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 6.79 (s, 1H), 6.72 (dd, J = 7.8, 1.5 Hz, 1H), 6.51 (td, J = 7.8, 1.5 Hz, 2H), 6.42 (dd, J = 8.0, 1.6 Hz, 1H), 5.79 (s, 1H), 4.20 (m, 1H), 4.04 (m, 1H), 3.84 (m, 1H), 3.72 (s, 3H), 3.57 (m, 1H), 3.31 (t, 1H), 3.15 (m, 3H), 3.00 (m, 2H), 2.93 (m, 1H), 2.81 (m, 1H), 2.66 (m, 1H), 2.39 (m, 1H), 2.27 (m, 2H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 162.0, 146.7, 140.4, 137.9, 132.9, 132.5, 131.4, 131.32, 128.9, 121.0 (q, J = 320.7 Hz), 119.6, 114.4, 55.2, 51.7, 44.5, 34.8, 33.4, 33.3, 30.7, 29.4, 28.4. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ

–78.01. HRMS (ESI-TOF) m/z : [M-OTf]⁺ calcd for $\text{C}_{21}\text{H}_{25}\text{OS}$: 325.1621; found: 325.1621.

1-(1⁵-(Methylthio)-1,4(1,4-dibenzenacyclohexaphane-1²-yl)-tetrahydro-1*H*-thiophen-1-*ium* Trifluoromethanesulfonate (1c**).** Following the general procedure, compound **1c** was obtained by column chromatography on silica gel [eluent: CH_2Cl_2 /MeOH = 50:1, v/v]. 735 mg, 30% yield, colorless viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.05 (dd, J = 7.9, 1.5 Hz, 1H), 6.71 (s, 1H), 6.59 (dd, J = 8.0, 1.5 Hz, 1H), 6.49 (dd, J = 8.0, 1.7 Hz, 1H), 6.36 (dd, J = 7.9, 1.7 Hz, 1H), 6.04 (s, 1H), 4.15 (m, 2H), 3.86 (m, 1H), 3.55 (m, 1H), 3.18 (m, 5H), 2.97 (m, 3H), 2.61 (m, 1H), 2.37 (m, 1H), 2.31 (s, 3H), 2.25 (m, 1H), 2.17 (m, 1H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 149.0, 143.2, 140.9, 139.5, 138.2, 132.9, 131.1, 131.0, 130.9, 130.7, 127.8, 120.9 (q, J = 320.9 Hz), 119.3, 51.6, 43.8, 34.7, 33.2, 32.9, 32.2, 29.3, 28.3, 14.1. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ –78.02. HRMS (ESI-TOF) m/z : [M-OTf]⁺ calcd for $\text{C}_{21}\text{H}_{25}\text{S}_2$: 341.1392; found: 341.1396.

1-(1⁵-(But-3-en-1-ylthio)-1,4(1,4-dibenzenacyclohexaphane-1²-yl)tetrahydro-1*H*-thiophen-1-*ium* Trifluoromethanesulfonate (1d**).** Following the general procedure, compound **1d** was obtained by column chromatography on silica gel [eluent: CH_2Cl_2 /MeOH = 50:1, v/v]. 587 mg, 37% yield, yellow viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.09 (d, J = 7.5 Hz, 1H), 6.73 (s, 1H), 6.59 (dd, J = 31.1, 7.3 Hz, 2H), 6.39 (d, J = 7.4 Hz, 1H), 6.15 (s, 1H), 5.84 (m, 1H), 5.12 (m, 2H), 4.20 (m, 2H), 3.93 (m, 1H), 3.60 (m, 1H), 3.43 (m, 1H), 3.24 (m, 5H), 3.00 (m, 3H), 2.85 (m, 2H), 2.63 (m, 1H), 2.42 (m, 2H), 2.32 and 2.20 (m each, 1:1H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 148.1, 143.1, 141.8, 139.7, 138.3, 135.6, 132.9, 132.5, 131.4, 131.2, 130.8, 128.2, 120.9 (q, J = 318.6 Hz), 120.0, 117.0, 51.7, 43.8, 34.7, 33.5, 33.2, 32.5, 32.4, 31.0, 29.4, 28.4. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ –78.00. HRMS (ESI-TOF) m/z : [M-OTf]⁺ calcd for $\text{C}_{24}\text{H}_{29}\text{S}_2$: 381.1705; found: 381.1708.

1-(1²-(4-Fluorobutyl)thio)-1,4(1,4-dibenzenacyclohexaphane-1²-yl)tetrahydro-1*H*-thiophen-1-*ium* Trifluoromethanesulfonate (1e**).** Following the general procedure, compound **1e** was obtained by column chromatography on silica gel [eluent: CH_2Cl_2 /MeOH = 50:1, v/v]. 776 mg, 47% yield, yellow viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.08 (dd, J = 7.9, 1.5 Hz, 1H), 6.73 (s, 1H), 6.62 (dd, J = 7.9, 1.5 Hz, 1H), 6.54 (dd, J = 8.0, 1.6 Hz, 1H), 6.40 (dd, J = 7.9, 1.6 Hz, 1H), 6.17 (s, 1H), 4.53 (t, 1H), 4.41 (t, 1H), 4.19 (m, 2H), 3.92 (m, 1H), 3.58 (m, 1H), 3.28 (m, 1H), 3.18 (m, 4H), 3.00 (m, 3H), 2.84 (m, 2H), 2.63 (m, 1H), 2.42 (m, 2H), 2.32 (m, 1H), 2.20 (m, 1H), 1.88 and 1.81 (m each, 1:3H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 148.0, 143.1, 141.7, 139.7, 138.4, 132.90, 132.5, 131.5, 131.2, 130.8, 128.2, 121.0 (q, J = 318.9 Hz), 119.9, 84.3, 82.7, 51.7, 43.8, 34.7, 33.4, 33.2, 32.5, 31.1, 29.5 (d, J = 19.9 Hz), 29.4, 28.4, 24.49 (d, J = 4.4 Hz). $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ –78.00, –218.86. HRMS (ESI-TOF) m/z : [M-OTf]⁺ calcd for $\text{C}_{24}\text{H}_{30}\text{FS}_2$: 401.1767; found: 401.1772.

1-(4³-Nitro-1,4(1,4-dibenzenacyclohexaphane-1²-yl)tetrahydro-1*H*-thiophen-1-*ium* Trifluoromethanesulfonate (1f**).** Following the general procedure, compound **1f** was obtained by column chromatography on silica gel [eluent: CH_2Cl_2 /MeOH = 50:1, v/v]. 617.2 mg, 42% yield, the ratio of different substitution sites is 3:7:1, white solid, m.p.: 152–153 $^\circ\text{C}$. ^1H NMR (400 MHz, CDCl_3) δ 6.84 (d, J = 8.2 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.63 (s, 2H), 6.59 (s, 2H), 4.37 (m, 1H), 4.24 (m, 1H), 4.15 (m, 1H), 3.70 (m, 1H), 3.33 (m, 4H), 3.13 (m, 4H), 2.59 (m, 2H), 2.45 (m, 1H), 2.22 (m, 1H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 144.7, 142.1, 140.2, 139.0, 138.7, 137.3, 133.8, 133.6, 132.5, 131.0, 130.3, 125.7, 51.7, 43.0, 35.2, 35.1, 34.7, 34.0, 29.5, 28.6. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ –78.14. HRMS (ESI-TOF) m/z : [M-OTf]⁺ calcd for $\text{C}_{20}\text{H}_{22}\text{NO}_2\text{S}$: 340.1366; found: 340.1367.

1,4(1,4-Dibenzenacyclohexaphane-1²-yldimethylsulfonium Trifluoromethanesulfonate (1i**).** Following the general procedure, compound **1i** was obtained by column chromatography on silica gel [eluent: DCM/MeOH = 20:1 v/v]. 605 mg, 24% yield, white solid, m.p.: 138–139 $^\circ\text{C}$. ^1H NMR (400 MHz, CDCl_3) δ 7.08 (d, J = 1.1 Hz, 1H), 6.79 (dd, J = 7.9, 1.3 Hz, 1H), 6.66 (d, J = 7.9 Hz, 1H), 6.56 (s, 2H), 6.46 (q, J = 8.0 Hz, 2H), 3.50 (m, 1H), 3.44 (s, 3H), 3.16

(m, 7H), 2.90 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 144.8, 141.5, 140.2, 139.2, 138.8, 137.0, 133.63, 133.56, 132.3, 130.9, 130.0, 124.1, 120.9 ($q, J = 320.4$ Hz), 35.1, 34.8, 34.8, 33.2, 31.7, 24.2. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ -78.06. HRMS (ESI-TOF) m/z : [M-OTf]⁺ calcd for $\text{C}_{18}\text{H}_{21}\text{S}$: 269.1358; found: 269.1357.

A Typical Procedure for the Preparation of 1g and 1h. Synthesis of 5-(1,4(1,4)-Dibenzene cyclohexaphane-1²-yl)-5H-thianthren-5-ium 2,2,2-Trifluoroacetate (1g). A solution of [2.2]paracyclophane (2.08 g, 10 mmol) and thianthrene 5-oxide (11 mmol) in CH_2Cl_2 (20 mL) was cooled to -78 °C in dry ice-acetone bath under nitrogen atmosphere, and $(\text{CF}_3\text{CO})_2\text{O}$ (1.1 equiv) was then added dropwise. The reaction mixture was stirred at -78 °C for 15 min and allowed to warm up to ambient temperature. The stirring was continued for 24 h at ambient temperature. After [2.2]paracyclophane was completely consumed by TLC monitoring on silica gel, the resultant mixture was evaporated with all of the volatiles under reduced pressure. The residue was purified by silica gel column chromatography (eluent: CH_2Cl_2 /methanol = 20:1, v/v), affording 1g (3.41 g, 64%) as a white solid.

5-(1,4(1,4)-Dibenzene cyclohexaphane-1²-yl)-5H-thianthren-5-ium 2,2,2-Trifluoroacetate (1g). Following the general procedure, compound 1g was obtained by column chromatography on silica gel [eluent: DCM/MeOH = 50:1 v/v]. 3.41 g, 64% yield, white solid, m.p.: 236–237 °C. ^1H NMR (400 MHz, CDCl_3) δ 8.79 (d, $J = 6.6$ Hz, 2H), 7.84 (m, 3H), 7.58 (m, 3H), 7.13 (d, $J = 8.0$ Hz, 1H), 6.65 (dd, $J = 7.8, 1.4$ Hz, 1H), 6.56 (d, $J = 7.9$ Hz, 1H), 6.49 (dd, $J = 7.9, 1.4$ Hz, 1H), 6.44 (dd, $J = 7.9, 1.5$ Hz, 1H), 6.06 (dd, 1H), 5.64 (d, $J = 1.3$ Hz, 1H), 3.77 (m, 2H), 3.20 (m, 1H), 2.97 (m, 3H), 2.85 (m, 1H), 2.72 (m, 1H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 160.9 ($q, J = 33.2$ Hz), 142.1, 140.8, 139.3, 138.4, 136.6, 135.6, 135.2, 134.1, 133.9, 133.7, 133.2, 132.2, 131.4, 130.8, 130.6, 130.6, 130.3, 129.9, 122.6, 121.1, 117.4 ($q, J = 296.1$ Hz), 116.4, 34.9, 34.8, 34.4, 33.6. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ -74.57. HRMS (ESI-TOF) m/z : [M-CF₃COO]⁺ calcd for $\text{C}_{28}\text{H}_{23}\text{S}_2$: 423.1236; found: 423.1238.

5-(1,4(1,4)-Dibenzene cyclohexaphane-1²-yl)-5H-dibenzo[b,d]-thiophen-5-ium 2,2,2-Trifluoroacetate (1h). Following the general procedure, compound 1h was obtained by column chromatography on silica gel [eluent: DCM/MeOH = 20:1 v/v]. 605 mg, 24% yield, white solid, decomposes at 200 °C. ^1H NMR (400 MHz, CDCl_3) δ 8.48 (d, $J = 7.9$ Hz, 1H), 8.23 (d, $J = 7.5$ Hz, 1H), 8.04 (d, $J = 7.7$ Hz, 1H), 7.97 (t, 1H), 7.88 (t, 1H), 7.75 (d, $J = 8.1$ Hz, 1H), 7.63 (t, 1H), 7.44 (t, 1H), 6.90 (dd, $J = 7.9, 1.2$ Hz, 1H), 6.72 (d, $J = 7.9$ Hz, 1H), 6.66 (d, $J = 7.9$ Hz, 2H), 6.57 (dd, $J = 7.8, 1.4$ Hz, 1H), 6.29 (dd, $J = 8.0, 1.3$ Hz, 1H), 5.96 (s, 1H), 4.08 (ddd, $J = 14.1, 10.2, 3.7$ Hz, 1H), 3.56 (ddd, 1H), 3.45 (ddd, $J = 14.3, 10.7, 3.7$ Hz, 1H), 3.22 (ddd, 1H), 3.00 (m, 3H), 2.73 (m, 1H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 161.1 ($q, J = 40.0$ Hz), 144.6, 143.1, 141.08 (s), 140.2, 139.5, 139.1, 138.4, 137.0, 135.2, 133.7, 133.6, 133.3, 133.0, 132.9, 132.6, 131.7, 131.5, 129.3, 128.2, 127.3, 126.9, 125., 124.8, 124.3, 117.6 ($q, J = 286.9$ Hz), 35.5, 35.1, 34.9, 33.3. $^{19}\text{F}\{\text{H}\}$ NMR (376 MHz, CDCl_3) δ -74.55. HRMS (ESI-TOF) m/z : [M-CF₃COO]⁺ calcd for $\text{C}_{28}\text{H}_{23}\text{S}$: 391.1515; found: 391.1514.

A Typical Procedure for the Preparation of Symmetrical 2. Synthesis of Di-p-Tolylphosphine Oxide (2b). Diethyl phosphonate (0.69 g, 5 mmol) in anhydrous THF (10 mL) was slowly added to the arylmagnesium bromide solution (11 mmol, 2.2 equiv) precooled at 0 °C under nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 30 min and then further stirred at ambient temperature for 12 h. The reaction was quenched with saturated aqueous NH_4Cl (30 mL) and extracted with ethyl acetate (3 \times 20 mL). The organic extract was dried in MgSO_4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether (60–90 °C)/ethyl acetate: 1:1, v/v) to give the target symmetrical diarylphosphine oxide 2b (1.84 g, 40%) as a white solid.

Synthesis of Unsymmetrical Phenyl(p-tolyl)phosphine Oxide (2q). Ethyl phenylphosphinate (0.85 g, 5 mmol) in anhydrous THF (10 mL) was slowly added to the p-tolylmagnesium bromide solution (11 mmol, 2.2 equiv) precooled at 0 °C under nitrogen atmosphere.

The reaction mixture was stirred at 0 °C for 30 min and then further stirred at ambient temperature for 12 h. The reaction was quenched with saturated aqueous NH_4Cl (30 mL) and extracted with ethyl acetate (3 \times 20 mL). The organic extract was dried over MgSO_4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether (60–90 °C)/ethyl acetate: 1:1, v/v) to give target unsymmetrical diarylphosphine oxide 2q (0.81 g, 75%) as a white solid.

A Typical Procedure for the Synthesis of 3 and 5. Synthesis of (4-(1,4(1,4)-Dibenzene cyclohexaphane-12-ylthio)butyl)-diphenylphosphine Oxide (3a). A mixture of 1a (133 mg, 0.30 mmol), 2a (73 mg, 0.36 mmol), and KO'Bu (67 mg, 0.60 mmol) in 3 mL of BuOH was vigorously stirred at 50 °C for 14 h under nitrogen atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1, v/v) to afford compound 3a (95 mg, 96%). In a similar fashion, other compounds of types 3 and 5 were synthesized, respectively.

(4-(1,4(1,4)-Dibenzene cyclohexaphane-1²-ylthio)butyl)-diphenylphosphine Oxide (3a). Following the general procedure, compound 3a was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 95 mg, 96% yield, colorless viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.72 (d, $J = 7.6$ Hz, 2H), 7.69 (d, $J = 7.5$ Hz, 2H), 7.47 (m, 6H), 6.91 (dd, $J = 7.8, 1.4$ Hz, 1H), 6.53 (dd, $J = 7.8, 1.5$ Hz, 1H), 6.44 (dd, $J = 7.9, 1.3$ Hz, 1H), 6.39 (m, 2H), 6.34 (dd, $J = 7.8, 1.4$ Hz, 1H), 6.29 (s, 1H), 3.44 (m, 1H), 3.16 (m, 1H), 3.03 (m, 4H), 2.91 (m, 1H), 2.75 (m, 1H), 2.69 (t, 2H), 2.23 (m, 2H), 1.69 (m, 4H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 140.3, 140.0, 139.5, 139.2, 137.2, 134.7, 134.6, 133.3, 132.91 (d, $J = 98.1$ Hz), 132.85, 131.9, 131.8 (d, $J = 2.4$ Hz), 130.82 (d, $J = 9.1$ Hz), 130.80, 128.8, 128.7 (d, $J = 11.7$ Hz), 35.4, 35.1, 34.4, 33.8, 33.1, 30.5 (d, $J = 14.6$ Hz), 29.4 (d, $J = 71.7$ Hz), 20.9 (d, $J = 3.6$ Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 32.4. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{32}\text{H}_{34}\text{OPS}$: 497.2062; found: 497.2066.

(4-(1,4(1,4)-Dibenzene cyclohexaphane-1²-ylthio)butyl)-di-p-tolylphosphine Oxide (3b). Following the general procedure, compound 3b was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 151 mg, 96% yield, white solid, m.p.: 191–192 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.60 (d, $J = 8.0$ Hz, 2H), 7.57 (d, $J = 8.1$ Hz, 2H), 7.29–7.22 (m, 4H), 6.91 (dd, $J = 7.8, 1.4$ Hz, 1H), 6.52 (dd, $J = 7.8, 1.5$ Hz, 1H), 6.44 (dd, $J = 7.9, 1.3$ Hz, 1H), 6.39 (t, 2H), 6.34 (dd, $J = 7.8, 1.4$ Hz, 1H), 6.24 (s, 1H), 3.44 (m, 1H), 3.17 (m, 1H), 3.03 (m, 4H), 2.91 (m, 1H), 2.76 (m, 1H), 2.69 (t, 2H), 2.38 (s, 6H), 2.19 (m, 2H), 1.68 (m, 4H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz). δ 142.1 (d, $J = 2.0$ Hz), 140.3, 139.9, 139.5, 139.2, 137.3, 134.7, 134.4, 133.3, 132.9, 131.9, 130.9 (d, $J = 9.4$ Hz), 130.7, 129.9 (d, $J = 103.7$ Hz), 129.4 (d, $J = 11.9$ Hz), 128.8, 35.4, 35.1, 34.4, 33.8, 33.0, 30.6 (d, $J = 14.6$ Hz), 29.6 (d, $J = 72.1$ Hz), 21.6, 21.0 (d, $J = 2.9$ Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 32.6. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{34}\text{H}_{38}\text{OPS}$: 525.2375; found: 525.2377.

(4-(1,4(1,4)-Dibenzene cyclohexaphane-1²-ylthio)butyl)-di-m-tolylphosphine Oxide (3c). Following the general procedure, compound 3c was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 145 mg, 92% yield, colorless viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.58 (d, $J = 11.8$ Hz, 2H), 7.45 (m, 2H), 7.33 (m, 4H), 6.91 (dd, $J = 7.8, 1.6$ Hz, 1H), 6.52 (dd, $J = 7.8, 1.7$ Hz, 1H), 6.45 (dd, $J = 7.9, 1.6$ Hz, 1H), 6.41 (m, 2H), 6.34 (dd, $J = 7.8, 1.6$ Hz, 1H), 6.24 (d, $J = 1.3$ Hz, 1H), 3.44 (m, 1H), 3.16 (m, 1H), 3.04 (m, 4H), 2.91 (m, 1H), 2.75 (m, 1H), 2.70 (t, 2H), 2.38 (s, 6H), 2.21 (m, 2H), 1.69 (m, 4H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz). δ 140.4, 134.0, 139.5, 139.3, 138.7 (d, $J = 11.2$ Hz), 137.3, 134.7, 134.5, 133.4, 132.9, 132.6 (d, $J = 2.4$ Hz), 132.0, 131.5 (d, $J = 9.8$ Hz), 130.8, 128.9 (d, $J = 92.4$ Hz), 128.82, 128.77 (d, $J = 95.4$ Hz), 128.7, 128.5, 127.8 (d, $J = 8.8$ Hz), 35.5, 35.1, 34.4, 33.8, 33.0, 30.6 (d, $J = 14.8$ Hz), 29.8, 29.4 (d, $J = 71.6$ Hz), 29.1, 21.6, 21.0 (d, $J = 3.5$ Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162

MHz) δ 32.6. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₄H₃₈OPS: 525.2375; found: 525.2380.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)di-*o*-tolylphosphine Oxide (3d). Following the general procedure, compound 3d was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 146 mg, 93% yield, yellow viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (m, 2H), 7.39 (t, 2H), 7.27 (t, 2H), 7.19 (d, J = 4.1 Hz, 1H), 7.17 (d, J = 4.2 Hz, 1H), 6.92 (dd, J = 7.8, 1.8 Hz, 1H), 6.52 (dd, J = 7.8, 1.8 Hz, 1H), 6.44 (dd, J = 7.8, 1.8 Hz, 1H), 6.40 (m, 2H), 6.35 (dd, J = 7.8, 1.8 Hz, 1H), 6.25 (d, J = 1.2 Hz, 1H), 3.46 (m, 1H), 3.17 (m, 1H), 3.02 (m, 4H), 2.91 (m, 1H), 2.76 (m, 1H), 2.71 (t, 2H), 2.32 (m, 8H), 1.72 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz). δ 141.4 (d, J = 8.4 Hz), 140.2, 139.8, 139.3, 139.0, 137.1, 134.5 (d, J = 16.8 Hz), 133.2, 132.7, 132.0–131.5 (m), 130.9 (d, J = 1.0 Hz), 130.6, 128.7, 125.6 (d, J = 11.7 Hz), 35.3, 35.0, 34.3, 33.7, 32.91, 30.5 (d, J = 14.7 Hz), 28.6 (d, J = 71.7 Hz) 21.2 (d, J = 4.1 Hz), 20.9 (d, J = 3.1 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 34.2. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₄H₃₈OPS: 525.2375; found: 525.2377.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(4-*iso*-propylphenyl)-phosphine Oxide (3e). Following the general procedure, compound 3e was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 160 mg, 92% yield, yellow solid, m.p.: 65–66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.30 (dd, J = 8.0, 2.1 Hz, 4H), 6.93 (dd, J = 7.8, 1.7 Hz, 1H), 6.52 (dd, J = 7.8, 1.7 Hz, 1H), 6.44 (dd, J = 7.9, 1.6 Hz, 1H), 6.39 (m, 2H), 6.34 (dd, J = 7.8, 1.7 Hz, 1H), 6.23 (d, J = 0.9 Hz, 1H), 3.43 (m, 1H), 3.15 (m, 1H), 3.03 (m, 4H), 2.92 (m, 3H), 2.75 (m, 1H), 2.70 (t, 2H), 2.19 (m, 2H), 1.70 (m, 4H), 1.25 (s, 6H), 1.23 (s, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz). δ 152.7 (d, J = 2.6 Hz), 140.3, 139.7, 139.4, 139.1, 137.3, 134.6, 134.2, 133.3, 132.8, 131.8, 130.9, 130.8, 130.6, 130.2 (d, J = 99.6 Hz), 128.7, 126.8 (d, J = 11.9 Hz), 35.4, 35.0, 34.3, 34.1, 33.7, 32.9, 30.5 (d, J = 14.8 Hz), 29.6 (d, J = 71.9 Hz), 23.7, 20.9 (d, J = 3.4 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 32.2. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₈H₄₆OPS: 581.3001; found: 581.3004.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(4-*tert*-butylphenyl)-phosphine Oxide (3f). Following the general procedure, compound 3f was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 164 mg, 90% yield, white solid, m.p.: 76–77 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 9.8, 8.6 Hz, 4H), 7.47 (dd, J = 8.2, 2.0 Hz, 4H), 6.92 (dd, J = 7.8, 1.8 Hz, 1H), 6.52 (dd, J = 7.8, 1.8 Hz, 1H), 6.45 (dd, J = 7.9, 1.8 Hz, 1H), 6.40 (m, 2H), 6.34 (dd, J = 7.8, 1.8 Hz, 1H), 6.24 (d, J = 1.2 Hz, 1H), 3.44 (m, 1H), 3.16 (m, 1H), 3.08 (m, 1H), 3.02 (m, 3H), 2.92 (m, 1H), 2.76 (m, 1H), 2.70 (t, 2H), 2.20 (m, 2H), 1.70 (m, 4H), 1.32 (s, 18H). ¹³C{¹H} NMR (CDCl₃, 100 MHz). δ 155.2 (d, J = 2.5 Hz), 140.4, 139.9, 139.5, 139.2, 137.4, 134.7, 134.4, 133.4, 132.9, 131.9, 130.8 (d, J = 9.6 Hz), 130.7, 129.8 (d, J = 100.8 Hz), 128.8, 125.7 (d, J = 11.9 Hz), 35.5, 35.1, 34.4, 33.8, 33.0, 31.2, 30.7 (d, J = 14.8 Hz), 29.7 (d, J = 72.0 Hz), 21.0 (d, J = 3.4 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 32.3. HRMS (ESI-TOF) m/z : [M + Na]⁺ calcd for C₄₀H₄₉OPSNa: 631.3134; found: 631.3126.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(4-methoxyphenyl)-phosphine Oxide (3g). Following the general procedure, compound 3g was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 157 mg, 94% yield, white solid, m.p.: 93–94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (m, 4H), 6.88 (dd, J = 7.8, 1.5 Hz, 1H), 6.72 (m, 4H), 6.52 (dd, J = 7.8, 1.7 Hz, 1H), 6.44 (dd, J = 7.8, 1.6 Hz, 1H), 6.38 (m, 2H), 6.30 (dd, J = 7.8, 1.4 Hz, 1H), 6.09 (s, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.34 (m, 1H), 3.12 (m, 1H), 3.01 (m, 4H), 2.88 (m, 1H), 2.69 (m, 1H), 2.39 (m, 2H), 2.05 (m, 2H), 1.46 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz). δ 162.4, 140.3, 139.3, 139.2, 137.5, 134.5, 133.8, 133.3, 133.0, 132.9, 132.8, 131.9, 130.3, 128.6, 122.2 (d, J = 108.0 Hz), 114.3 (d, J = 12.8 Hz), 55.3, 35.4, 35.0, 34.3, 33.6, 32.1, 30.1 (d, J = 16.7 Hz), 29.5 (d, J = 73.9 Hz), 20.7. ³¹P{¹H}

NMR (CDCl₃, 162 MHz) δ 36.1. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₄H₃₈O₃PS: 557.2274; found: 557.2280.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(4-dimethylamino-phenyl)-phosphine Oxide (3h). Following the general procedure, compound 3h was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 133 mg, 76% yield, white solid, m.p.: 118–119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (m, 4H), 6.88 (dd, J = 7.8, 1.4 Hz, 1H), 6.50 (m, 5H), 6.42 (dd, J = 7.8, 1.3 Hz, 1H), 6.37 (m, 2H), 6.29 (dd, J = 7.8, 1.4 Hz, 1H), 6.11 (s, 1H), 3.36 (m, 1H), 3.12 (m, 1H), 3.02 (m, 4H), 2.90 (s, 12H), 2.69 (m, 1H), 2.61 (m, 1H), 2.45 (m, 2H), 2.04 (m, 2H), 1.51 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz). δ 152.3 (d, J = 2.0 Hz), 140.3, 139.4, 139.3, 139.2, 137.7, 134.6, 133.8, 133.3, 132.8, 132.4 (d, J = 10.8 Hz), 131.9, 130.3, 128.62, 116.9 (d, J = 112.4 Hz), 111.5 (d, J = 12.5 Hz), 40.0, 35.4, 35.1, 34.3, 33.7, 32.5, 30.4 (d, J = 15.7 Hz), 29.9 (d, J = 74.0 Hz), 21.2 (d, J = 2.9 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 36.4. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₆H₄₄N₂OPS: 583.2906; found: 583.2909.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(3,5-dimethylphenyl)-phosphine Oxide (3i). Following the general procedure, compound 3i was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 151 mg, 91% yield, colorless viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 12.5 Hz, 4H), 7.13 (s, 2H), 6.95 (dd, J = 7.8, 1.8 Hz, 1H), 6.53 (dd, J = 7.8, 1.8 Hz, 1H), 6.45 (dd, J = 7.8, 1.7 Hz, 1H), 6.40 (m, 2H), 6.35 (dd, J = 7.8, 1.8 Hz, 1H), 6.25 (s, 1H), 3.99 (q, J = 6.5 Hz, 2H), 3.48 (m, 1H), 3.20 (m, 1H), 3.03 (m, 4H), 2.91 (m, 1H), 2.77 (m, 3H), 2.32 (s, 12H), 1.84 (m, 2H), 1.71 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.4, 139.8, 139.5, 139.3, 138.3 (d, J = 13.8 Hz), 137.4, 134.7, 134.3, 134.0 (d, J = 2.8 Hz), 133.4, 132.9, 132.0, 131.4 (d, J = 133.8 Hz), 130.7, 129.3 (d, J = 10.1 Hz), 128.8, 64.3 (d, J = 6.1 Hz), 35.5, 35.1, 34.4, 33.8, 33.2, 29.9 (d, J = 6.5 Hz), 25.7, 21.4. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 32.8. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₆H₄₂OPS: 553.2688; found: 553.2686.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(2,6-dimethylphenyl)-phosphine Oxide (3j). Following the general procedure, compound 3j was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 144 mg, 87% yield, white solid, m.p.: 118–119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, 2H), 6.99 (dd, J = 7.5, 3.4 Hz, 4H), 6.90 (dd, J = 7.8, 1.7 Hz, 1H), 6.53 (dd, J = 7.8, 1.8 Hz, 1H), 6.45 (dd, J = 7.8, 1.7 Hz, 1H), 6.22 (s, 1H), 3.43 (m, 1H), 3.16 (m, 1H), 3.05 (m, 4H), 2.92 (m, 1H), 2.75 (m, 1H), 2.69 (t, 2H), 2.38 (m, 14H), 1.66 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 141.2 (d, J = 2.7 Hz), 141.1 (d, J = 2.6 Hz), 140.3, 139.8, 139.5, 139.2, 137.3, 134.7, 134.3, 133.4, 132.8, 131.9, 130.7 (d, J = 1.7 Hz), 130.7, 130.3 (d, J = 10.4 Hz), 128.7, 35.6 (d, J = 66.0 Hz), 35.4, 35.1, 34.4, 33.8, 33.1, 30.9 (d, J = 16.2 Hz), 23.0 (d, J = 3.1 Hz), 22.1 (d, J = 2.8 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 41.1. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₆H₄₂OPS: 553.2688; found: 553.2688.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(4-fluorophenyl)-phosphine Oxide (3k). Following the general procedure, compound 3k was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 142 mg, 89% yield, yellow viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (m, 4H), 7.13 (m, 4H), 6.89 (dd, J = 7.8, 1.7 Hz, 1H), 6.50 (dd, J = 7.8, 1.7 Hz, 1H), 6.41 (m, 3H), 6.32 (dd, J = 7.8, 1.7 Hz, 1H), 6.22 (s, 1H), 3.42 (m, 1H), 3.15 (m, 1H), 3.02 (m, 4H), 2.88 (m, 1H), 2.72 (m, 3H), 2.15 (m, 2H), 1.66 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 164.92 (dd, J = 253.4, 3.2 Hz), 140.3, 139.9, 139.3, 139.1, 137.0, 134.6, 134.6, 133.3–133.0 (m), 132.8, 131.8, 130.8, 128.7, 116.2 (d, J = 12.8 Hz), 116.0 (d, J = 12.8 Hz), 35.3, 35.0, 34.3, 33.7, 32.9, 30.4 (d, J = 14.6 Hz), 29.4 (d, J = 72.7 Hz), 20.6 (d, J = 3.7 Hz). ³¹P{¹H} NMR (CDCl₃, 376 MHz) δ –106.6. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₂H₃₂F₂OPS: 533.1876; found: 533.1865.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)bis(3-fluorophenyl)-phosphine Oxide (3l). Following the general procedure,

compound **3l** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 139 mg, 87% yield, colorless viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (m, 6H), 7.21 (m, 2H), 6.90 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.52 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.42 (m, 3H), 6.34 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.26 (d, *J* = 1.1 Hz, 1H), 3.45 (m, 1H), 3.16 (m, 1H), 3.03 (m, 4H), 2.91 (m, 1H), 2.76 (m, 1H), 2.70 (t, 2H), 2.20 (m, 2H), 1.69 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 162.69 (dd, *J* = 250.8, 16.2 Hz), 140.4, 140.1, 139.4, 139.2, 137.0, 135.7 (d, *J* = 3.0 Hz), 135.6 (d, *J* = 3.1 Hz), 134.8 (d, *J* = 16.1 Hz), 133.3, 132.8, 131.9, 131.0, 130.9, 130.9, 130.8, 130.7, 128.8, 126.4 (d, *J* = 1.7 Hz), 126.3 (d, *J* = 1.6 Hz), 119.3 (d, *J* = 2.4 Hz), 119.1 (d, *J* = 2.3 Hz), 117.8 (d, *J* = 10.1 Hz), 117.6 (d, *J* = 9.8 Hz), 35.4, 35.0, 34.4, 33.8, 33.1, 30.4 (d, *J* = 14.8 Hz), 29.1 (d, *J* = 72.5 Hz), 20.5 (d, *J* = 3.7 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 30.5 (t, *J* = 5.2 Hz). ¹⁹F{¹H} NMR (CDCl₃, 376 MHz) δ -110.5 (d, *J* = 3.0 Hz), -110.46 (d, *J* = 2.9 Hz). HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₂H₃₂F₂OPS: 533.1876; found: 533.1870.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)butyl)bis(4-(trifluoromethoxy)-phenyl)phosphine Oxide (**3m**). Following the general procedure, compound **3m** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 144 mg, 72% yield, colorless viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (m, 4H), 7.29 (d, *J* = 7.9 Hz, 4H), 6.91 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.51 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.42 (m, 3H), 6.34 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.24 (d, *J* = 1.2 Hz, 1H), 3.44 (m, 1H), 3.16 (m, 1H), 3.03 (m, 4H), 2.90 (m, 1H), 2.73 (m, 3H), 2.17 (m, 2H), 1.67 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 151.9, 140.4, 140.0, 139.4, 139.1, 137.0, 134.7 (d, *J* = 0.9 Hz), 133.3, 132.8, 132.7 (d, *J* = 10.2 Hz), 131.9, 131.6 (d, *J* = 3.1 Hz), 130.8, 130.6 (d, *J* = 3.0 Hz), 128.8, 120.8 (d, *J* = 12.4 Hz), 120.3 (q, *J* = 258.9 Hz), 35.3, 35.0, 34.3, 33.7, 32.9, 30.3 (d, *J* = 14.7 Hz), 29.2 (d, *J* = 72.6 Hz), 20.5 (d, *J* = 3.7 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 41.1. ¹⁹F{¹H} NMR (CDCl₃, 376 MHz) δ -57.6. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₄H₃₂F₆O₃PS: 665.1708; found: 665.1711.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)butyl)di([1,1'-biphenyl]-4-yl)phosphine Oxide (**3n**). Following the general procedure, compound **3n** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 158 mg, 81% yield, yellow viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (m, 4H), 7.72 (m, 4H), 7.61 (d, *J* = 7.3 Hz, 4H), 7.47 (t, 4H), 7.40 (m, 2H), 6.95 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.53 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.43 (m, 3H), 6.36 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.27 (s, 1H), 3.47 (m, 1H), 3.19 (m, 1H), 3.04 (m, 4H), 2.92 (m, 1H), 2.76 (m, 3H), 2.31 (m, 2H), 1.81 (m, 2H), 1.72 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 144.6 (d, *J* = 2.3 Hz), 140.3, 140.0, 139.9, 139.4, 139.2, 137.2, 134.7, 134.6, 133.3, 132.8, 131.9, 131.4 (d, *J* = 9.5 Hz), 130.8, 129.0, 128.8, 128.2, 127.4 (d, *J* = 11.8 Hz), 127.3, 35.4, 35.1, 34.4, 33.8, 33.0, 30.6 (d, *J* = 14.6 Hz), 29.5 (d, *J* = 71.9 Hz), 20.9 (d, *J* = 3.3 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 32.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₄₄H₄₂OPS: 649.2688; found: 649.2684.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)butyl)di(naphthalen-2-yl)phosphine Oxide (**3o**). Following the general procedure, compound **3o** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 126 mg, 70% yield, white solid, m.p.: 145–146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.40 (s, 1H), 7.90 (m, 7H), 7.68 (t, 2H), 7.58 (m, 4H), 6.89 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.51 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.43 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.39 (m, 2H), 6.32 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.22 (d, *J* = 1.3 Hz, 1H), 3.41 (m, 1H), 3.13 (m, 1H), 3.00 (m, 4H), 2.88 (m, 1H), 2.71 (m, 3H), 2.42 (m, 2H), 1.80 (m, 2H), 1.70 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.4, 140.1, 139.5, 139.2, 137.2, 134.8 (d, *J* = 1.3 Hz), 134.7, 134.7, 133.4, 133.0 (d, *J* = 1.2 Hz), 132.9, 132.7 (d, *J* = 12.5 Hz), 132.0, 130.8, 129.0, 128.9, 128.7 (d, *J* = 11.5 Hz), 128.5 (d, *J* = 6.5 Hz), 128.3, 128.0, 127.1, 125.8 (d, *J* = 1.8 Hz), 125.7 (d, *J* = 1.5 Hz), 35.5, 35.1, 34.4, 33.8, 33.1, 30.6 (d, *J* = 14.6 Hz), 29.3 (d, *J* = 71.7 Hz), 21.0 (d, *J* = 3.3 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 32.7. HRMS

(ESI-TOF) *m/z*: [M + H]⁺ calcd for C₄₀H₃₈OPS: 597.2375; found: 597.2371.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)butyl)di(naphthalen-1-yl)phosphine Oxide (**3p**). Following the general procedure, compound **3p** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 127 mg, 71% yield, white solid, m.p.: 151–153 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 8.1 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.91 (m, 4H), 7.47 (m, 6H), 6.92 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.53 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.43 (m, 3H), 6.34 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.22 (d, *J* = 1.2 Hz, 1H), 3.42 (m, 1H), 3.16 (m, 1H), 3.03 (m, 4H), 2.90 (m, 1H), 2.69 (m, 5H), 1.84 (m, 2H), 1.68 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.3, 139.9, 139.4, 139.1, 137.21, 134.6, 134.4, 134.0 (d, *J* = 8.8 Hz), 133.5 (d, *J* = 8.1 Hz), 133.3, 133.1 (d, *J* = 2.7 Hz), 132.8, 131.90, 131.85, 131.8 (d, *J* = 4.6 Hz), 130.7, 130.1 (d, *J* = 3.5 Hz), 129.2 (d, *J* = 3.5 Hz), 129.1, 128.8, 127.4, 126.6 (d, *J* = 5.0 Hz), 126.5, 124.6 (d, *J* = 13.4 Hz), 35.4, 35.1, 34.4, 33.8, 32.9, 30.5 (d, *J* = 15.2 Hz), 30.3 (d, *J* = 72.0 Hz), 21.4 (d, *J* = 3.3 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 36.5. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₄₀H₃₈OPS: 597.2375; found: 597.2378.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)butyl)(phenyl)-(p-tolyl)phosphine Oxide (**3q**). Following the general procedure, compound **3q** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 147 mg, 96% yield, yellow solid, m.p.: 139–140 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.46 (m, 3H), 7.27 (m, 2H), 6.91 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.52 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.44 (dd, *J* = 7.9, 1.7 Hz, 1H), 6.41 (m, 2H), 6.34 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.23 (s, 1H), 3.43 (m, 1H), 3.15 (m, 1H), 3.03 (m, 4H), 2.91 (m, 1H), 2.76 (m, 1H), 2.69 (t, 2H), 2.39 (s, 3H), 2.20 (m, 2H), 1.69 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 142.3 (d, *J* = 2.7 Hz), 140.4, 140.0, 139.5, 139.2, 137.3, 134.6 (d, *J* = 17.3 Hz), 133.4, 133.3 (d, *J* = 96.3 Hz), 132.9, 132.0, 131.7 (d, *J* = 2.6 Hz), 131.0, 130.9, 130.8, 129.6 (d, *J* = 100.0 Hz), 129.5 (d, *J* = 11.8 Hz), 128.8 (d, *J* = 4.9 Hz), 128.7, 35.5, 35.1, 34.4, 33.8, 33.1, 30.6 (d, *J* = 14.8 Hz), 29.5 (d, *J* = 71.9 Hz), 21.7, 21.0 (d, *J* = 3.5 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz, 23 °C) δ 32.5. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₃H₃₆OPS: 511.2219; found: 511.2215.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)butyl)(4-fluorophenyl)(phenyl)phosphine Oxide (**3r**). Following the general procedure, compound **3r** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 139 mg, 90% yield, yellow viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (m, 4H), 7.47 (m, 3H), 7.13 (m, 2H), 6.91 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.52 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.42 (m, 3H), 6.34 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.23 (s, 1H), 3.44 (m, 1H), 3.16 (m, 1H), 3.03 (m, 4H), 2.91 (m, 1H), 2.76 (m, 1H), 2.69 (t, 2H), 2.39 (s, 3H), 2.20 (m, 2H), 1.69 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 164.9 (dd, *J* = 253.0, 3.0 Hz), 140.3, 139.9, 139.4, 139.1, 137.1, 134.6 (d, *J* = 10.0 Hz), 133.4, 133.30, 133.25, 133.2, 132.8, 132.2 (d, *J* = 3.1 Hz), 131.91, 131.87, 130.8, 130.6, 129.4 (t, *J* = 3.3 Hz), 128.8, 128.7 (d, *J* = 4.1 Hz), 128.4 (t, *J* = 3.5 Hz), 116.2 (d, *J* = 12.8 Hz), 115.9 (d, *J* = 12.5 Hz), 35.4, 35.0, 34.3, 33.7, 33.0, 30.4 (d, *J* = 14.6 Hz), 29.4 (d, *J* = 72.3 Hz), 20.7 (d, *J* = 3.6 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 31.7. ¹⁹F{¹H} NMR (CDCl₃, 376 MHz) δ -107.0. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₂H₃₂FOPS: 515.1968; found: 515.1971.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)butyl)(pentyl)phosphine Oxide (**3s**). Following the general procedure, compound **3s** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 121 mg, 82% yield, colorless viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (m, 2H), 7.47 (m, 3H), 6.90 (dt, *J* = 7.8, 2.0 Hz, 1H), 6.51 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.40 (m, 3H), 6.32 (dt, *J* = 7.8, 1.9 Hz, 1H), 6.22 (dd, *J*, 1H), 3.42 (m, 1H), 3.15 (m, 1H), 3.02 (m, 4H), 2.89 (m, 1H), 2.66 (m, 3H), 1.91 (m, 2H), 1.77 (m, 3H), 1.56 (m, 4H), 1.40 (m, 1H), 1.28 (m, 4H), 0.82 (t, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.3 (d, *J* = 2.0 Hz), 139.8, 139.4, 139.1, 137.2 (d, *J* = 2.5 Hz), 134.6, 134.4 (d, *J* = 3.6 Hz), 133.3, 132.8, 131.8, 131.5 (d, *J* = 2.7

Hz), 130.7 (d, J = 2.2 Hz), 130.4 (d, J = 8.8 Hz), 128.7, 128.6, 35.4, 35.0, 34.3, 33.7, 33.1 (d, J = 14.2 Hz), 32.9 (d, J = 2.4 Hz), 30.5 (d, J = 14.3 Hz), 29.8 (d, J = 68.5 Hz), 29.5 (d, J = 68.0 Hz), 22.1, 21.1 (d, J = 4.2 Hz), 20.8 (d, J = 2.0 Hz), 13.8. $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz, 23 °C) δ 40.3. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{31}\text{H}_{40}\text{OPS}$: 491.2532; found: 491.2534.

(4-(1,4(1,4)-Dibenzeneacyclohexaphane-1²-ylthio)butyl)-(cyclopropyl)(phenyl)-phosphine Oxide (3t). Following the general procedure, compound 3t was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 120 mg, 87% yield, colorless viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.70 (m, 2H), 7.48 (m, 3H), 6.92 (dt, J = 7.8, 1.7 Hz, 1H), 6.52 (dd, J = 7.8, 1.7 Hz, 1H), 6.42 (m, 3H), 6.34 (m, 1H), 6.24 (dd, J = 3.8, 1.2 Hz, 1H), 3.45 (m, 1H), 3.18 (m, 1H), 3.04 (m, 4H), 2.92 (m, 1H), 2.74 (m, 3H), 1.93 (m, 2H), 1.67 (m, 1H), 1.66 (m, 3H), 1.03 (m, 1H), 0.83 (m, 4H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 140.3, 139.9, 139.4, 139.2, 137.3, 134.7, 134.4 (d, J = 2.1 Hz), 133.33, 133.27 (d, J = 97.4 Hz), 132.8, 131.9, 131.6 (d, J = 2.3 Hz), 130.7, 130.3 (d, J = 8.8 Hz), 128.7, 128.6 (d, J = 11.2 Hz), 35.4, 35.1, 35.4, 33.7, 33.0, 30.6 (d, J = 14.4 Hz), 30.3 (d, J = 70.1 Hz), 21.0 (d, J = 3.4 Hz), 6.7 (d, J = 99.8 Hz), 2.9 (d, J = 3.8 Hz), 2.0 (d, J = 4.1 Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz, 23 °C) δ 38.6. HRMS (ESI-TOF) m/z : [M + Na]⁺ calcd for $\text{C}_{29}\text{H}_{33}\text{OPSNa}$: 483.1882; found: 483.1885.

(4-(1,4(1,4)-Dibenzeneacyclohexaphane-1²-ylthio)butyl)(phenyl)-(thiophen-2-yl)-phosphine Oxide (3u). Following the general procedure, compound 3u was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 102 mg, 72% yield, colorless viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.75 (m, 2H), 7.67 (m, 1H), 7.49 (m, 4H), 7.16 (m, 1H), 6.91 (dd, J = 7.8, 1.3 Hz, 1H), 6.52 (dd, J = 7.8, 1.6 Hz, 1H), 6.42 (m, 3H), 6.34 (dd, J = 7.8, 1.0 Hz, 1H), 6.24 (s, 1H), 3.44 (m, 1H), 3.17 (m, 1H), 3.04 (m, 4H), 2.91 (m, 1H), 2.73 (m, 3H), 2.24 (m, 2H), 1.72 (m, 4H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 140.3, 139.9, 139.4, 139.1, 137.1, 135.2 (d, J = 9.2 Hz), 134.7, 134.5 (d, J = 2.2 Hz), 133.3, 133.0 (d, J = 4.5 Hz), 132.9 (d, J = 118.5 Hz), 132.8, 132.0 (d, J = 2.6 Hz), 131.9, 130.7 (d, J = 3.1 Hz), 130.6, 128.8, 128.6, 128.4, 128.3, 35.4, 35.1, 34.4, 33.8, 33.0, 31.6 (d, J = 75.4 Hz), 30.4 (d, J = 15.2 Hz), 20.9 (d, J = 3.8 Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 27.1. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{30}\text{H}_{32}\text{OPS}_2$: 503.1627; found: 503.1628.

(4-(1,4(1,4)-Dibenzeneacyclohexaphane-1²-ylthio)butyl)di-(thiophen-2-yl)phosphine Oxide (3v). Following the general procedure, compound 3v was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 102 mg, 67% yield, colorless viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.71 (m, 2H), 7.58 (dd, J = 7.0, 3.4 Hz, 2H), 7.19 (m, 2H), 6.92 (dd, J = 7.8, 1.8 Hz, 1H), 6.52 (dd, J = 7.8, 1.8 Hz, 1H), 6.45 (dd, J = 7.9, 1.8 Hz, 1H), 6.41 (m, 2H), 6.35 (dd, J = 7.8, 1.8 Hz, 1H), 6.25 (s, 1H), 3.46 (m, 1H), 3.17 (m, 1H), 3.03 (m, 4H), 2.92 (m, 1H), 2.75 (m, 3H), 2.25 (m, 2H), 1.80 (m, 2H), 1.67 (m, 2H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 140.4, 140.0, 139.5, 139.2, 137.2, 135.5 (d, J = 9.9 Hz), 134.7, 134.6, 134.0 (d, J = 110.1 Hz), 133.4, 133.3, 132.9, 132.0, 130.8, 128.8, 128.5 (d, J = 13.8 Hz), 35.5, 35.1, 34.4, 33.8, 33.7 (d, J = 79.2 Hz), 33.1, 30.4 (d, J = 15.9 Hz), 21.1 (d, J = 3.9 Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 21.9. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{28}\text{H}_{30}\text{OPS}_3$: 509.1191; found: 509.1188.

Diethyl (4-(1,4(1,4)-Dibenzeneacyclohexaphane-12-ylthio)butyl)-phosphonate (3w). Following the general procedure, compound 3w was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 95 mg, 73% yield, white solid, m.p.: 75–76 °C. ^1H NMR (400 MHz, CDCl_3) δ 6.95 (dd, J = 7.8, 1.8 Hz, 1H), 6.53 (dd, J = 7.8, 1.8 Hz, 1H), 6.43 (m, 3H), 6.37 (dd, J = 7.8, 1.8 Hz, 1H), 6.28 (d, J = 0.8 Hz, 1H), 4.07 (m, 4H), 3.50 (m, 1H), 3.21 (m, 1H), 3.06 (m, 4H), 2.93 (m, 1H), 2.77 (m, 3H), 1.69 (m, 6H), 1.31 (t, 6H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 139.4, 139.0, 138.6, 138.3, 136.4, 133.8, 133.5, 132.4, 131.9, 131.0, 129.8, 127.9, 60.6 (d, J = 6.5 Hz), 34.5, 34.1, 33.5, 32.8, 32.2, 29.3 (d, J = 16.9 Hz), 24.4 (d, J = 141.0 Hz), 20.9 (d, J = 5.0 Hz), 15.6 (d, J = 5.9 Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 31.8.

HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{24}\text{H}_{34}\text{O}_3\text{PS}$: 433.1961; found: 433.1967.

Synthesis of 1,4(1,4)-Dibenzeneacyclohexaphane-1²-yl(but-3-en-1-yl)sulfane (4). A mixture of 1a (1.78 g, 4 mmol) and KO'Bu (897.7 mg, 8 mmol) in 10 mL of $^3\text{BuOH}$ was vigorously stirred at 50 °C for 14 h under nitrogen atmosphere.

After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1, v/v) to give compound 4 (1.15 g, 98%).

1,4(1,4)-Dibenzeneacyclohexaphane-1²-yl(but-3-en-1-yl)sulfane (4). Following the general procedure, compound 4 was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1 v/v]. 1.15 g, 98% yield, colorless viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 6.98 (dd, J = 7.8, 1.8 Hz, 1H), 6.55 (dd, J = 7.8, 1.9 Hz, 1H), 6.48 (dd, J = 7.8, 1.8 Hz, 1H), 6.44 (m, 2H), 6.39 (dd, J = 7.8, 1.8 Hz, 1H), 6.32 (d, J = 1.0 Hz, 1H), 5.86 (m, 1H), 5.07 (m, 2H), 3.53 (m, 1H), 3.24 (m, 1H), 3.07 (m, 4H), 2.95 (m, 1H), 2.80 (m, 3H), 2.34 (m, 2H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 134.8, 134.5, 133.4, 132.9, 132.0, 130.8, 128.9, 116.2, 35.5, 35.2, 34.5, 33.84, 33.6, 33.1. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{20}\text{H}_{23}\text{S}$: 295.1515; found: 295.1515.

((1⁵-Methoxy-1,4(1,4)-dibenzeneacyclohexaphane-1²-yl)thio)-methyl)diphenylphosphine Oxide (5a). Following the general procedure, compound 5a was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 134 mg, 85% yield, white solid, m.p.: 128–129 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.69 (m, 4H), 7.47 (m, 6H), 6.72 (m, 2H), 6.42 (dd, J = 7.8, 1.8 Hz, 1H), 6.39 (s, 1H), 6.31 (dd, J = 7.8, 1.7 Hz, 1H), 5.66 (s, 1H), 3.69 (s, 3H), 3.51 (m, 1H), 3.34 (m, 1H), 3.15 (m, 1H), 3.00 (m, 3H), 2.64 (m, 3H), 2.48 (m, 1H), 2.18 (m, 2H), 1.67 (m, 2H), 1.59 (m, 2H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 157.6, 144.4, 140.5, 139.8, 138.9, 133.6, 133.0, 132.6, 131.79, 131.77, 131.5, 130.9, 130.8, 130.7, 128.8, 128.74, 128.67, 127.8, 127.0, 118.2, 54.5, 35.4, 34.5, 34.2, 33.7, 31.2, 30.9 (d, J = 14.7 Hz), 29.4 (d, J = 71.9 Hz), 20.7 (d, J = 3.6 Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 32.3. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{33}\text{H}_{36}\text{O}_2\text{PS}$: 527.2168; found: 527.2169.

((1⁵-(Methylthio)-1,4(1,4)-dibenzeneacyclohexaphane-1²-yl)-thio)methyl)diphenylphosphine Oxide (5b). Following the general procedure, compound 5b was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 121 mg, 74% yield, yellow viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.70 (m, 4H), 7.46 (m, 6H), 6.99 (dd, J = 7.8, 1.7 Hz, 1H), 6.86 (dd, J = 7.9, 1.8 Hz, 1H), 6.34 (m, 2H), 6.22 (s, 1H), 6.04 (s, 1H), 3.40 (m, 2H), 3.18 (m, 2H), 3.01 (t, 2H), 2.64 (m, 4H), 2.32 (s, 3H), 2.20 (m, 2H), 1.67 (m, 4H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 141.3, 139.1, 139.0, 138.2, 137.7, 137.1, 133.4 (d, J = 8.0 Hz), 132.5, 132.4, 131.9, 131.8, 131.7, 131.7, 130.8 (d, J = 9.3 Hz), 129.7, 128.7 (d, J = 11.6 Hz), 128.6, 34.2, 33.8, 33.6, 33.0, 30.6 (d, J = 14.7 Hz), 29.7, 29.0, 20.7 (d, J = 3.6 Hz), 15.4. $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 32.1. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{33}\text{H}_{36}\text{O}_2\text{PS}$: 543.1940; found: 543.1944.

((1⁵-(But-3-en-1-ylthio)-1,4(1,4)-dibenzeneacyclohexaphane-1²-yl)thio)methyl)diphenylphosphine Oxide (5c). Following the general procedure, compound 5c was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 106 mg, 60% yield, yellow viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.71 (m, 4H), 7.48 (m, 6H), 6.93 (dd, J = 7.8, 1.8 Hz, 1H), 6.89 (dd, J = 7.8, 1.8 Hz, 1H), 6.35 (m, 2H), 6.23 (s, 1H), 6.19 (s, 1H), 5.83 (m, 1H), 5.06 (m, 2H), 3.41 (m, 2H), 3.17 (m, 2H), 3.02 (m, 2H), 2.78 (m, 2H), 2.64 (m, 4H), 2.32 (m, 2H), 2.23 (m, 2H), 1.69 (m, 4H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 140.6, 140.5, 139.2 (d, J = 5.1 Hz), 136.6, 136.2, 136.0, 135.6, 135.3, 133.0 (d, J = 99.2 Hz), 132.3, 132.2, 131.89, 131.87, 130.9 (d, J = 9.2 Hz), 129.4, 128.8 (d, J = 11.5 Hz), 116.3, 34.2, 34.1, 33.6, 33.5, 33.4, 33.3, 30.6 (d, J = 14.5 Hz), 29.5 (d, J = 71.5 Hz), 20.9 (d, J = 3.5 Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ 32.3. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{36}\text{H}_{40}\text{O}_2\text{PS}_2$: 583.2253; found: 583.2251.

(4-((1⁵-((4-Fluorobutyl)thio)-1,4(1,4)-dibenzenacyclohexaphane-1²-yl)thio)butyl)diphenylphosphine Oxide (5d). Following the general procedure, compound **5d** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 118 mg, 65% yield, colorless viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (m, 4H), 7.47 (m, 6H), 6.92 (dd, J = 7.8, 1.8 Hz, 1H), 6.89 (dd, J = 7.8, 1.8 Hz, 1H), 6.35 (m, 2H), 6.22 (s, 1H), 6.19 (s, 1H), 4.47 (t, 1H), 4.36 (t, 1H), 3.40 (m, 2H), 3.15 (m, 2H), 3.01 (m, 2H), 2.75 (m, 2H), 2.65 (m, 4H), 2.22 (m, 2H), 1.82 (m, 1H), 1.71 (m, 7H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.5, 140.4, 139.1, 136.1, 135.8, 135.4, 135.3, 132.9 (d, J = 98.2 Hz), 132.2 (d, J = 2.2 Hz), 131.78, 131.75, 130.8 (d, J = 9.2 Hz), 129.28, 129.25, 128.7 (d, J = 11.6 Hz), 83.6 (d, J = 165.3 Hz), 34.04, 34.03, 33.46, 33.45, 33.44, 33.3, 30.5 (d, J = 14.7 Hz), 29.5 (d, J = 19.7 Hz), 29.3 (d, J = 71.8 Hz), 25.2 (d, J = 4.6 Hz), 20.8 (d, J = 3.6 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 32.2. ¹⁹F{¹H} NMR (CDCl₃, 376 MHz) δ –218.4. HRMS (ESI-TOF) m/z : [M + Na]⁺ calcd for C₃₆H₄₀FOPS₂Na: 625.2134; found: 625.2131.

(4-((4³-Nitro-1,4(1,4)-dibenzenacyclohexaphane-1²-yl)thio)butyl)diphenylphosphine Oxide (5e). Following the general procedure, compound **5e** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:4 v/v]. 106 mg, 65% yield, yellow viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.7 Hz, 2H), 7.69 (d, J = 7.7 Hz, 2H), 7.47 (m, 6H), 6.92 (dd, J = 7.8, 1.5 Hz, 1H), 6.51 (dd, J = 7.8, 1.5 Hz, 1H), 6.44 (dd, J = 7.9, 1.4 Hz, 1H), 6.39 (m, 1H), 6.34 (dd, J = 7.8, 1.4 Hz, 1H), 6.22 (s, 1H), 3.43 (m, 1H), 3.15 (m, 1H), 3.03 (m, 4H), 2.91 (m, 1H), 2.72 (m, 3H), 2.21 (m, 2H), 1.68 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.2, 139.7, 139.3, 139.0, 137.1, 134.5, 134.2, 133.2, 132.7, 131.8, 131.70, 131.68, 130.7, 130.6, 130.5, 128.7, 128.58, 128.55, 35.3, 34.9, 34.2, 33.6, 32.8, 30.4 (d, J = 14.9 Hz), 29.2 (d, J = 71.6 Hz), 20.7 (d, J = 3.5 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 32.5. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₂H₃₃NO₃PS: 542.1913; found: 542.1915.

(2-((2-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)phenyl)thio)phenyl)diphenylphosphine Oxide (6). Following the general procedure, compound **6** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 149 mg, 79% yield, white solid, m.p.: 236–237 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (m, 4H), 7.51 (m, 7H), 7.37 (t, 1H), 7.21 (t, 1H), 7.06 (m, 2H), 6.94 (m, 2H), 6.72 (dd, J = 7.8, 1.0 Hz, 2H), 6.50 (m, 5H), 6.36 (dd, J = 7.8, 1.2 Hz, 1H), 3.10 (m, 4H), 2.93 (m, 3H), 2.65 (m, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 143.7, 143.3, 142.9 (d, J = 7.0 Hz), 141.0, 139.6, 139.3, 139.2, 135.4, 135.0, 134.6 (d, J = 10.8 Hz), 133.8, 133.2, 133.1, 132.9, 132.8 (d, J = 2.9 Hz), 132.4, 132.4, 132.3, 132.3, 132.2, 131.9, 131.7 (d, J = 3.1 Hz), 130.7, 130.4, 130.0, 129.8 (d, J = 8.8 Hz), 129.0, 128.6 (d, J = 1.8 Hz), 128.4 (d, J = 1.8 Hz), 127.5, 125.9, 125.4 (d, J = 11.7 Hz), 35.4, 34.9, 34.7, 34.1. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 30.1. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₄₀H₃₄OPS₂: 625.1783; found: 625.1788.

(2'-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)-[1,1'-biphenyl]-2-yl)diphenylphosphine Oxide (7). Following the general procedure, compound **7** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 137 mg, 77% yield, dr = 64:36, white solid, m.p.: 115–116 °C. Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (m, 6H), 7.43 (m, 6H), 7.28 (m, 3H), 6.93 (m, 1H), 6.84 (m, 1H), 6.54 (m, 6H), 6.37 (m, 2H), 3.11 (m, 6H), 3.01–2.66 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.6 (d, J = 8.6 Hz), 142.7, 140.6, 124.40, 35.4, 34.9, 34.8, 34.2. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 27.5. Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (m, 6H), 7.43 (m, 6H), 7.28 (m, 2H), 7.07 (m, 1H), 6.93 (m, 2H), 6.84 (m, 2H), 6.71 (m, 2H), 6.54 (m, 2H), 6.37 (m, 2H), 3.50 (m, 1H), 3.28 (m, 2H), 3.11 (m, 2H), 3.01–2.66 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.3 (d, J = 8.1 Hz), 142.7, 140.7, 139.7, 124.6, 35.4, 34.9, 34.5. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 28.0. The ¹³C{¹H} NMR signals for the phenyl protons for both isomers: δ 139.5, 139.3, 139.2, 139.2, 138.3, 138.0, 137.8 (d, J = 4.0 Hz), 136.5, 136.3, 135.4, 135.2, 134.9, 134.4, 134.2, 134.21, 134.18, 134.1, 134.0, 133.7, 133.5, 133.2, 133.14, 133.09, 133.07, 133.0, 132.9, 132.8, 132.74, 132.70, 132.6,

132.5, 132.4, 132.3, 132.23, 132.18, 132.12, 132.1, 132.0, 131.6, 131.51, 131.46 (d, J = 2.7 Hz), 131.4 (d, J = 2.3 Hz), 131.27, 131.25, 131.2, 131.1, 131.0 (d, J = 2.7 Hz), 129.6, 129.5, 128.5, 128.4, 128.3, 128.13, 128.11, 128.08, 128.0, 127.8, 127.5, 127.4, 127.2, 127.2. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₄₀H₃₄OPS: 593.2062; found: 593.2064.

1,4(1,4)-Dibenzenacyclohexaphane-1²-yl(methyl)sulfane (8). Following the general procedure, compound **8** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v]. 68.2 mg, 89% yield, white solid, m.p.: 93–94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 7.8 Hz, 1H), 6.56 (d, J = 7.8 Hz, 1H), 6.46 (d, J = 7.8 Hz, 1H), 6.39 (m, 3H), 6.11 (s, 1H), 3.45 (m, 1H), 3.26 (m, 1H), 3.03 (m, 5H), 2.79 (m, 1H), 2.35 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.5, 139.5, 139.3, 139.1, 137.9, 134.6, 133.6, 132.9, 131.6, 130.6, 129.6, 128.1, 35.5, 35.3, 34.1, 33.4, 15.4. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₁₇H₁₉S: 255.1201; found: 255.1205.

Methyldiphenylphosphine Oxide (9). Following the general procedure, compound **9** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1 v/v].

43.1 mg, 66% yield, white solid, m.p.: 112–113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (m, 4H), 7.43 (m, 6H), 1.99 (s, 2H), 1.96 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 134.0 (d, J = 101.3 Hz), 131.8 (d, J = 2.8 Hz), 130.5 (d, J = 9.8 Hz), 128.7 (d, J = 11.8 Hz), 16.6 (d, J = 73.8 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 30.0.

A Typical Procedure for the Preparation of Compounds 10. **Synthesis of (4-(1,4(1,4)-Dibenzenacyclohexaphane-12-ylthio)-butyl)diphenylphosphane (10a).** A mixture of **3a** (496 mg, 1 mmol), HSiCl₃ (406 mg, 3 mmol), and toluene (5 mL) was stirred at 120 °C for 24 h under nitrogen atmosphere, and then all the volatiles evaporated under reduced pressure.

The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60–90 °C)/ethyl acetate = 10:1, v/v), affording **10a** as a white solid (389 mg, 81%).

A mixture of **1a** (133 mg, 0.3 mmol), HPPPh₂ (67 mg, 0.36 mmol), and KO'Bu (67 mg, 0.6 mmol) in 3 mL of 'BuOH was vigorously stirred at 50 °C for 14 h under nitrogen atmosphere.

After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/ethyl acetate = 10:1, v/v) to afford compound **10a** (85 mg, 63%).

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)-diphenylphosphane (10a). Following the general procedure, compound **10a** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1 v/v]. 389 mg, 81% yield, colorless viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (m, 4H), 7.35 (m, 6H), 6.98 (dd, J = 7.7, 1.2 Hz, 1H), 6.56 (dd, J = 7.8, 1.3 Hz, 1H), 6.48 (d, J = 7.8 Hz, 1H), 6.43 (m, 2H), 6.39 (dd, J = 8.0, 1.3 Hz, 1H), 6.27 (s, 1H), 3.50 (m, 1H), 3.22 (m, 1H), 3.08 (m, 4H), 2.95 (m, 1H), 2.80 (m, 1H), 2.74 (t, 2H), 2.06 (m, 2H), 1.74 (m, 2H), 1.59 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.3, 139.8, 139.5, 139.2, 138.7 (d, J = 12.5 Hz), 137.6, 134.7, 134.2, 133.4, 132.90, 132.9, 132.7, 131.9, 130.6, 128.8, 128.7, 128.5 (d, J = 6.7 Hz), 35.5, 35.1, 34.4, 33.8, 33.2, 30.8 (d, J = 13.0 Hz), 27.7 (d, J = 11.6 Hz), 25.3 (d, J = 16.4 Hz). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ –16.4. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for C₃₂H₃₄PS: 481.2113; found: 481.2116.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1²-ylthio)butyl)di-p-tolylphosphane (10b). Following the general procedure, compound **10b** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1 v/v]. 203 mg, 80% yield, white solid, m.p.: 186–187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, 4H), 7.18 (d, J = 7.6 Hz, 4H), 6.99 (dd, J = 7.8, 1.8 Hz, 1H), 6.57 (dd, J = 7.8, 1.8 Hz, 1H), 6.49 (dd, J = 7.8, 1.7 Hz, 1H), 6.43 (m, 2H), 6.39 (dd, J = 7.8, 1.8 Hz, 1H), 6.28 (d, J = 1.0 Hz, 1H), 3.50 (m, 1H), 3.22 (m, 1H), 3.08 (m, 4H), 2.96 (m, 1H), 2.77 (m, 3H), 2.37 (s, 6H), 2.04 (m, 2H), 1.74 (m, 2H), 1.60 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 140.3, 139.7, 139.5, 139.2,

138.6, 137.6, 135.0 (d, J = 9.0 Hz), 134.6, 134.1, 133.4, 132.8, 132.8, 132.63, 132.61, 131.9, 130.5, 129.4, 129.3, 128.7, 35.5, 35.1, 34.4, 33.7, 33.1, 30.7 (d, J = 13.1 Hz), 27.8 (d, J = 10.4 Hz), 25.3 (d, J = 16.3 Hz), 21.4. $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ -18.2. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{34}\text{H}_{38}\text{PS}$: 509.2426; found: 509.2425.

(4-(1,4(1,4)-Dibenzenacyclohexaphane-1'-ylthio)butyl)di([1,1'-biphenyl]-4-yl)-phosphane (10c). Following the general procedure, compound **10c** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1 v/v]. 253 mg, 80% yield, yellow viscous liquid. ^1H NMR (400 MHz, CDCl_3) δ 7.69 (m, 8H), 7.61 (t, 4H), 7.52 (t, 4H), 7.43 (t, 2H), 7.07 (dd, J = 7.8, 1.7 Hz, 1H), 6.61 (dd, J = 7.8, 1.8 Hz, 1H), 6.54 (dd, J = 7.8, 1.7 Hz, 1H), 6.48 (m, 3H), 6.36 (d, J = 0.9 Hz, 1H), 3.58 (m, 1H), 3.29 (m, 1H), 3.12 (m, 4H), 3.00 (m, 1H), 2.85 (m, 3H), 2.19 (m, 2H), 1.83 (m, 2H), 1.73 (m, 2H). $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3 , 100 MHz) δ 141.4, 140.5, 140.3, 139.7, 139.5, 139.1, 137.5, 137.4, 134.6, 134.2, 133.3, 133.1, 132.8, 131.9, 130.5, 128.9, 128.7, 127.6, 127.2, 127.14, 127.09, 35.4, 35.1, 34.4, 33.7, 33.1, 30.7 (d, J = 13.0 Hz), 27.7 (d, J = 11.5 Hz), 25.3 (d, J = 16.4 Hz). $^{31}\text{P}\{\text{H}\}$ NMR (CDCl_3 , 162 MHz) δ -17.5. HRMS (ESI-TOF) m/z : [M + H]⁺ calcd for $\text{C}_{44}\text{H}_{42}\text{PS}$: 633.2739; found: 633.2733.

Synthesis of 4-Methyl-1,1'-biphenyl (11). A mixture of 1-bromo-4-methylbenzene (34 mg, 0.2 mmol), phenylboronic acid (24 mg, 0.2 mmol), $\text{Pd}(\text{MeCN})_2\text{Cl}_2$ (2.6 mg, 5 mol %), **10a** (4.8 mg, 5 mol %), CsF (61 mg, 0.4 mmol), and THF 2 mL was stirred at 60 °C for 12 h under nitrogen atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1, v/v) to afford compound **11** (27 mg, 80%).

4-Methyl-1,1'-biphenyl (11). Following the general procedure, compound **11** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1 v/v]. 27 mg, 80% yield, white solid, m.p.: 42.1–43.5 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.65 (m, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7.48 (t, 2H), 7.39 (d, J = 7.3 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 2.46 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 141.3, 138.5, 137.1, 129.6, 128.8, 127.1, 127.1, 21.2.

Synthesis of 1-Methyl-4-(phenylethynyl)benzene (12). A mixture of 1-iodo-4-methylbenzene (44 mg, 0.2 mmol), phenylacetylene (20 mg, 0.2 mmol), $\text{Pd}(\text{MeCN})_2\text{Cl}_2$ (2.6 mg, 5 mol %), **10a** (4.8 mg, 5 mol %), CuI (1.9 mg, 5 mol %), MeCN (2 mL), and iPr_2EtN (125 μl) was stirred at 80 °C for 12 h under nitrogen atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1, v/v) to afford compound **12** (31 mg, 81%).

1-Methyl-4-(phenylethynyl)benzene (12). Following the general procedure, compound **12** was obtained by column chromatography on silica gel [eluent: petroleum ether (60–90 °C)/ethyl acetate = 100:1 v/v]. 31 mg, 81% yield, yellow solid, m.p.: 62.3–63.3 °C. ^1H NMR (400 MHz, CDCl_3) δ 7.56 (m, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.37 (m, 3H), 7.18 (d, J = 7.9 Hz, 2H), 2.40 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 138.5, 131.7, 131.6, 129.2, 128.4, 128.2, 123.6, 120.3, 89.7, 88.9, 21.6.

Gram-Scale Synthesis of 3a. A mixture of **1a** (1.33 g, 3.0 mmol), **2a** (0.73 g, 3.6 mmol), and KO°Bu (0.67 g, 6.0 mmol) in 10 mL of $^\circ\text{BuOH}$ was vigorously stirred at 50 °C for 14 h under nitrogen atmosphere. After the mixture was cooled to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1, v/v) to afford compound **3a** (1.35 g, 91%).

TEMPO or BHT-Trapping Radical Experiments. A mixture of **1a** (133 mg, 0.3 mmol), **2a** (73 mg, 0.36 mmol), KO°Bu (67 mg, 0.6 mmol), and TEMPO or BHT (2,6-di-*tert*-butyl-4-methylphenol) (1.5 mmol) in 3 mL of $^\circ\text{BuOH}$ was stirred at 50 °C for 14 h under an argon atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant

residue was purified by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/ethyl acetate = 1:1, v/v) to afford compound **3a** in 76/48% yields.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its online [Supporting Information](#).

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.Sc01085>.

Experimental materials and procedures, analytical data and NMR spectra of compounds, and X-ray crystallographic analysis for **1b** and **3b** ([PDF](#))

Accession Codes

Deposition Numbers [2360629](#) and [2396526](#) contain the supporting crystallographic data for this paper. These data can be obtained free of charge via the joint Cambridge Crystallographic Data Centre (CCDC) and Fachinformationszentrum Karlsruhe [Access Structures service](#).

AUTHOR INFORMATION

Corresponding Authors

Zhengkun Yu — *Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China*; orcid.org/0000-0002-9908-0017; Email: zkyu@dicp.ac.cn

Yong-Gui Zhou — *School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China*; orcid.org/0000-0002-3321-5521; Email: yzhou@dicp.ac.cn

Authors

Mingrui Li — *School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China*; orcid.org/0000-0001-8348-1919

Juan Ma — *Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China*; orcid.org/0000-0002-0932-9748

Liandi Wang — *Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China*; orcid.org/0000-0003-4996-3687

Kaikai Wu — *Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China*; orcid.org/0000-0003-1950-5343

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.joc.Sc01085>

Notes

Nitromethane is an extremely flammable and explosive liquid, which can detonate upon extreme heat. Contact with amines, alkali metals and strong reducing agents should be strictly avoided.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (22171261) for support of our research.

■ REFERENCES

(1) (a) Wu, S. Q.; Felder, S.; Brom, J.; Pointillart, F.; Maury, O.; Micouin, L.; Benedetti, E. [2.2]Paracyclophanes: From Selective Functionalization to Optical Properties. *Adv. Opt. Mater.* **2024**, *12*, No. 2400934. (b) Ly, D.; Bacsa, J.; Davies, H. M. L. Rhodium(II)-Catalyzed Asymmetric Cyclopropanation and Desymmetrization of [2.2]Paracyclophanes. *ACS Catal.* **2024**, *14*, 6423–6431. (c) Zhang, X.; Zhou, Y.; Yu, Z.-X.; Tung, C.-H.; Xu, Z. H. Strained Dehydro-[2.2]paracyclophane Enabled Planar Chirality Construction and [2.2]Paracyclophane Functionalization. *Angew. Chem., Int. Ed.* **2025**, *64*, No. e202420667.

(2) (a) Lyssenko, K. A.; Antipin, M. Y.; Antonov, D. Yu. The Transannular Interaction in [2.2]Paracyclophane: Repulsive or Attractive? *ChemPhysChem* **2003**, *4*, 817–823. (b) Zhao, Y.; Wang, H.; Wu, B.; Zhou, Y.-G. Synthesis of Paracyclophanes with Planar and Central Chirality: Kinetic Resolution of [2.2]Paracyclophane Aldimines via Palladium-Catalyzed Addition of Arylboronic Acids. *Org. Chem. Front.* **2019**, *6*, 3956–3960.

(3) Cram, D. J.; Allinger, N. L. Macro Rings. XII. Stereochemical Consequences of Steric Compression in the Smallest Paracyclophane. *J. Am. Chem. Soc.* **1955**, *77*, 6289–6294.

(4) (a) Braun, C.; Bräse, S.; Schafer, L. L. Planar-Chiral [2.2]Paracyclophane-Based Amides as Proligands for Titanium- and Zirconium-Catalyzed Hydroamination. *Eur. J. Org. Chem.* **2017**, *2017*, 1760–1764. (b) Zippel, C.; Hassan, Z.; Nieger, M.; Bräse, S. Design and Synthesis of a [2.2]Paracyclophane-based Planar Chiral Dirhodium Catalyst and its Applications in Cyclopropanation Reaction of Vinylarenes with α -Methyl- α -Diazo Esters. *Adv. Synth. Catal.* **2020**, *362*, 3431–3436.

(5) (a) Li, Q.-Z.; Guan, Y.-L.; Huang, Q.-W.; Qi, T.; Xiang, P.; Zhang, X.; Leng, H.-J.; Li, J.-L. emperature-Controlled Divergent Asymmetric Synthesis of Indole-Based Medium-Sized Heterocycles through Palladium Catalysis. *ACS Catal.* **2023**, *13*, 1164–1172. (b) Bai, Y.-Q.; Wang, X.-W.; Wu, B.; Wang, X.-Q.; Liao, R.-Z.; Li, M.; Zhou, Y.-G. Design and Synthesis of Planar-Chiral Oxazole–Pyridine *N,N*-Ligands: Application in Palladium-Catalyzed Asymmetric Acetoxylation Cyclization. *ACS Catal.* **2023**, *13*, 9829–9838. (c) Wang, J.; Xie, Q.-X.; Li, X.; Yu, C.-B.; Zhou, Y.-G. Synthesis of Planar-Chiral [2.2]Paracyclophane-Based Oxazole–Pyrimidine Ligands and Application in Nickel-Catalyzed 1,2-Reduction of α,β -Unsaturated Ketones. *Chin. J. Chem.* **2024**, *42*, 705–710.

(6) Uozumi, Y.; Hayashi, T. Catalytic Asymmetric Synthesis of Optically Active 2-Alkanols via Hydrosilylation of 1-Alkenes with a Chiral Nonphosphine-Palladium Catalyst. *J. Am. Chem. Soc.* **1991**, *113*, 9887–9888.

(7) Carroll, M. P.; Guiry, P. J. P,N Ligands in Asymmetric Catalysis. *Chem. Soc. Rev.* **2014**, *43*, 819–833.

(8) Salomó, E.; Orgué, S.; Riera, A.; Verdaguér, X. Highly Enantioselective Iridium-Catalyzed Hydrogenation of Cyclic Enamides. *Angew. Chem., Int. Ed.* **2016**, *55*, 7988–7992.

(9) Gladiali, S.; Dore, A.; Fabbri, D. Novel Heterobidentate Ligands for Asymmetric Catalysis: Synthesis and Rhodium-Catalysed Reactions of S-Alkyl (R)-2-Diphenylphosphino-1,1'-binaphthyl-2'-thiol. *Tetrahedron: Asymmetry* **1994**, *5*, 1143–1146.

(10) Margalef, J.; Pàmies, O.; Pericàs, M. A.; Diéguez, M. Evolution of Phosphorus–Thioether Ligands for Asymmetric Catalysis. *Chem. Commun.* **2020**, *56*, 10795–10808.

(11) (a) Gladiali, S.; Medici, S.; Pirri, G.; Pulacchini, S.; Fabbri, D. BINAPS — an Axially Chiral P,S-Heterodonor Ligand for Asymmetric Catalysis Based on Binaphthalene Backbone. *Can. J. Chem.* **2001**, *79*, 670–678. (b) Cheung, H. Y.; Yu, W.-Y.; Lam, F. L.; Au-Yeung, T. T.-L.; Zhou, Z. Y.; Chan, T. H.; Chan, A. S. C. Enantioselective Pd-Catalyzed Allylic Alkylation of Indoles by a New Class of Chiral Ferrocenyl P/S Ligands. *Org. Lett.* **2007**, *9*, 4295–4298.

(12) Hopf, H.; Bondarenko, L.; Dix, I.; Hinrichs, H. Cyclophanes. Part LII:1 Ethynyl[2.2]paracyclophanes – New Building Blocks for Molecular Scaffolding. *Synthesis* **2004**, *16*, 2751–2759.

(13) (a) Berger, F.; Plutschack, M. B.; Rieger, J.; Yu, W. W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Site-Selective and Versatile Aromatic C–H Functionalization by Thianthrenation. *Nature* **2019**, *567*, 223–228. (b) Lou, J.; Wang, Q. N.; Wu, P.; Wang, H. M.; Zhou, Y.-G.; Yu, Z. K. Transition-Metal Mediated Carbon–Sulfur Bond Activation and Transformations: An Update. *Chem. Soc. Rev.* **2020**, *49*, 4307–4359. (c) Ahmadli, D.; Müller, S.; Xie, Y.; Smejkal, T.; Jaeckh, S.; Iosub, A. V.; Williams, S. R.; Ritter, T. Standardized Approach for Diversification of Complex Smal Molecules via Thianthrenium Salts. *J. Am. Chem. Soc.* **2025**, *147*, 4268–4283.

(14) Ye, Y.; Zhu, J.; Huang, Y. H. Diverse C–P Cross-Couplings of Arylsulfonium Salts with Diarylphosphines via Selective C–S Bond Cleavage. *Org. Lett.* **2021**, *23*, 2386–2391.

(15) Ma, J.; Lin, J.; Huang, Z. L.; Wu, P.; Zhou, Y.-G.; Yu, Z. K. Site-Selective Olefinic C–H Cyanation via Alkenyl Sulfonium Salts. *Org. Chem. Front.* **2023**, *10*, 4092–4099.

(16) (a) He, Y.; Huang, Z. L.; Ma, J.; Huang, F.; Lin, J.; Wang, H. M.; Xu, B.-H.; Zhou, Y.-G.; Yu, Z. K. Palladium-Catalyzed Fluoroalkylation via C(sp³)–S Bond Cleavage of Vinylsulfonium Salts. *Org. Lett.* **2021**, *23*, 6110–6114. (b) He, Y.; Huang, Z. L.; Ma, J.; Lin, J.; Zhou, Y.-G.; Yu, Z. K. Transition-Metal-Free Olefinic C–H Azidoalkylthiolation via C(sp³)–S Bond Cleavage of Vinylsulfonium Salts. *Adv. Synth. Catal.* **2022**, *364*, 3023–3034.

(17) Ma, J.; Lin, J.; Li, M. R.; Wang, L. D.; Wu, K. K.; Zhou, Y.-G.; Yu, Z. K. Formal Olefinic C–H Phosphinylation via Alkenyl Sulfonium Salts. *Adv. Synth. Catal.* **2024**, *366*, 3664–3669.

(18) (a) Chu, X.-Q.; Sun, L.-W.; Ma, C.; Chen, J.-W.; Chen, Y.-L.; Ni, Sh.-F.; Zhu, M.-Q.; Zhou, J.; Ma, M. T.; Shen, Z.-L. “On-Water” Defluorophosphorylation of Trifluoromethylated Enones with Phosphine Oxides. *Green Chem.* **2023**, *25*, 6489–6497. (b) Feng, M.-H.; Gao, S.-J.; Li, X.-Y.; Ma, M. T.; Shen, Z.-L.; Chu, X.-Q. “On-Water” Defluorinative Cyclization of Trifluoromethyl Enones with Phosphine Oxides: Synthesis of Polysubstituted Furans. *Org. Chem. Front.* **2024**, *11*, 3974–3981. (c) Huang, X.-Y.; Gao, S.-J.; Ge, D. H.; Ma, M. T.; Shen, Z.-L.; Chu, X.-Q. Modular Synthesis of Furans with Four Nonidentical Substituents by Aqueous Defluorinative Reaction of Trifluoromethyl Enones with Two Nucleophiles. *Org. Lett.* **2025**, *27*, 462–469.

(19) Sun, J. H.; Yan, Y. F.; Chen, X. X.; Huang, Z. W.; Huang, Y. H. Palladium-Catalyzed Regio- and Stereo-Selective Phosphination of Cyclic Biarylsulfonium Salts to Access Atropoisomeric Phosphines. *Chem. Sci.* **2024**, *15*, 6943–6948.

(20) Hu, Y.-F.; Feng, M.-H.; Zhang, P.-Y.; Xu, H.; Ma, M. T.; Shen, Z.-L.; Chu, X.-Q. Combining Hydrodefluorination and Defluorophosphorylation for Chemo- and Stereoselective Synthesis of *gem*-Fluorophosphine Alkenes. *Org. Lett.* **2023**, *25*, 6368–6373.

(21) Duan, S. Z.; Pan, A.; Du, Y.; Zhu, G. L.; Tian, X.; Zhang, H. B.; Walsh, P. J.; Yang, X. D. Nickel-Catalyzed Enantioselective Hydrophosphinylation of 2-Azadienes to Access Enantioenriched α -Aminophosphine Oxides. *ACS Catal.* **2023**, *13*, 10887–10894.

(22) Zhang, S.; Feng, Z. H.; Jiang, C. H.; Yu, X. J.; Pan, J. K.; Du, J.; Jiang, Z. Y.; Chen, Y.; Wang, T. L. Highly Enantioselective Synthesis of Phosphorus-Containing *e*-Benzosultams by Bifunctional Phosphonium Salt-Promoted Hydrophosphinylation. *Chem. - Eur. J.* **2021**, *27*, 11285–11290.

(23) Zhang, L.; Bai, S. K.; Zheng, L. J. Magnesium-Catalyzed Regioselective Hydrophosphinylation of Alkenes with Diarylphosphine Oxides. *Organometallics* **2023**, *42*, No. 2262.

(24) Abell, J. P.; Yamamoto, H. Dual-Activation Asymmetric Strecker Reaction of Aldimines and Ketimines Catalyzed by a Tethered Bis(8-quinolinolato) Aluminum Complex. *J. Am. Chem. Soc.* **2009**, *131*, 15118–15119.

(25) Miller, L. P.; Vogel, J. A.; Harel, S.; Krussman, J. M.; Melvin, P. R. Rapid Generation of P(V)–F Bonds Through the Use of Sulfone Iminium Fluoride Reagents. *Org. Lett.* **2023**, *25*, 1834–1838.

(26) Petit, C.; Favre-Réguillon, A.; Mignanic, G.; Lemaire, M. A Straightforward Synthesis of Unsymmetrical Secondary Phosphine Boranes. *Green Chem.* **2010**, *12*, 326–330.

(27) Tran, G.; Pardo, D. G.; Tsuchiya, T.; Hillebrand, S.; Vors, J.-P.; Cossy, J. Palladium-Catalyzed Phosphonylation: Synthesis of C3-, C4-, and C5-Phosphonylated Pyrazoles. *Org. Lett.* **2013**, *15*, 5550–5553.

(28) Xu, Y.; Mu, B.-S.; Tu, Z. Y.; Liang, W. Q.; Li, J. H.; Sang, Z. Y.; Liu, Z. B. Radiation-Induced Aerobic Oxidation *via* Solvent-Derived Peroxyl Radicals. *Chem. Sci.* **2025**, *16*, 1867–1875.

(29) Li, H.; Xu, B.; Liu, X.; A, S.; He, C.; Xia, H.; Mu, Y. A Metallosalen-Based Microporous Organic Polymer as a Heterogeneous Carbon–Carbon Coupling Catalyst. *J. Mater. Chem. A* **2013**, *1*, 14108–14114.

(30) Islam, K.; Bhunia, B. K.; Mandal, G.; Nag, B.; Jaiswal, C.; Mandal, B. B.; Kumar, A. Room-Temperature, Copper-Free, and Amine-Free Sonogashira Reaction in a Green Solvent: Synthesis of Tetraalkynylated Anthracenes and In Vitro Assessment of Their Cytotoxic Potentials. *ACS Omega* **2023**, *8*, 16907–16926.