Literature Report III

Enantioselective Total Synthesis of Bipolarolides A and B

Reporter: Shui-Long Lei

Checker: Xin-Yang Li

CV of Prof. Zhaohong Lu (陆钊洪)

Background:

- □ 2006-2010 B.S., Sun Yat-sen University
- □ 2011-2016 Ph.D., Shanghai Institute of Organic Chemistry
- 2017-2020 Postdoctor, Massachusetts Institute of Technology
- □ 2020-Now Assistant Professor, Professor, Xiamen University

Research Field:

- Total Synthesis of Highly Bioactive Natural Product
- Organic Electrochemical Synthesis

Contents

- 1 Introduction
- 2 Enantioselective Total Synthesis of Bipolarolides A and B
- 3 Summary

Introduction

- ☐ Bipolarolides A and B derived from ophiobolin were first isolated in 2019.
- ☐ They have a novel skeletal framework characterized by a [3.3.1] bridged ring system adorned with three contiguous quaternary carbon centers.
- ☐ Bipolarolide A has been shown to exhibit significant cholesterol-lowering activity.

Liu, M.; Sun, W.; Shen, L.; He, Y.; Liu, J.; Hu, Z.; Zhang, Y.* Angew. Chem. Int. Ed. 2019, 58, 12091

Retrosynthetic Analysis

Diels-Alder Reaction

"Secondary orbital overlap" In endo transition state
Not bond-forming, but stabilizing nonetheless

Exo transition state Secondary overlap not possible π orbitals are too far away

Retro Diels-Alder Reaction

Reverse ("retro") Diels-Alder Reaction

.0

Molecules such as N₂, CO₂, and CO can also be extruded from bicyclic molecules through a retro Diles-Alder processs.

Intramolecular Diels-Alder Reactions

◆ "Type I" Intramolecular Diels Alder Reactions

[n.4.0] fused bicyclic ring systerm

◆ "Type II" Intramolecular Diels Alder Reactions

[n.3.1] brigded bicyclic ring systerm

Retrosynthetic Analysis

Synthesis of Compound 14

3-furanmethanol

Synthesis of Compound 18

Retrosynthetic Analysis

Synthesis of Compound 21

Addition Reaction of Allylmetals to Carbonyl Compounds

"Regioselective (γ -) Addition *via* 6-Membered Ring Transition State"

Synthesis of Compound 23

Retrosynthetic Analysis

Synthesis of Compound 27

Retrosynthetic Analysis

Synthesis of Bipolarolide A

Riley Oxidation

Synthesis of Bipolarolide B

Summary

- > Total syntheses of bipolarolides A and B in 20 steps and 19 steps (the longest linear steps);
- Electrochemical oxidation for ether ring cyclization;
- > Establishment of the first chiral center *via* Ir-catalyzed asymmetric allylic alkylation.;
- > Efficient assembly of the [3.3.1] bridged ring system *via* type-II Diels-Alder reaction.

Writing Strategy

> First paragraph

Introduction

Biosynthesis

Synthesis Examples

Ophiobolins are a class of sesterterpenoid natural products, with over 100 family members isolated to date, and have attracted widespread attention from synthetic chemists. Among them, bipolarolides A and B, derived from ophiobolin and featuring a novel skeletal architecture, were first isolated by Zhang's research group in 2019.

Bipolarolide A has been shown to exhibit significant cholesterol-lowering activity (IC50 = $2.5 \,\mu\text{M}$). Biosynthetically, bipolarolides A and B are formed through C5–C10 bond formation within the 5/8/5 fused ring system of ophiobolin. This process generates a novel skeletal framework characterized by a [3,3,1] bridged ring system adorned with three contiguous quaternary carbon centers.

Inspired by this biosynthetic pathway, Jia and co-workers pioneered the asymmetric synthesis of bipolarolides A and B using a bioinspired Prins cyclization strategy. Recently, Fan's group achieved the racemic synthesis of bipolarolide B and bipoladien B via bridgehead enone chemistry.

Writing Strategy

Last paragraph

Summary

Prospect

In summary, the enantioselective total syntheses of 3 and 4 were efficiently achieved. Key steps include (1) establishment of the first chiral center via Ircatalyzed asymmetric allylic alkylation with 97% ee; (2) efficient assembly of the bridged ring system via type-II Diels-Alder reaction; (3) site-selective Wacker oxidation enabling precise conversion of olefin to methyl ketone; (4) formation of the D-ring structure through intramolecular aldol condensation; (5) electrochemical oxidation for ether ring cyclization; and (6) divergent modification of side chains in the late-stage synthesis to achieve targeted synthesis of **3** and **4**.

This synthetic route, characterized by powerful cycloaddition and precise stereochemical control, provides crucial compounds for subsequent bioactivity investigations.

Representative Examples

- ➤ This process generates a novel skeletal framework characterized by a [3,3,1] bridged ring system adorned with (佩戴, 装饰。 adorn vt 装饰, 使声色) three contiguous quaternary carbon centers.
- ➤ Intriguingly (adv. 有趣地, 引起好奇心地), **18** spontaneously produced trace DA adducts at ambient temperature, yet heating paradoxically (adv. 矛盾地, 事与愿违地, 出乎意料地) diminished adduct formation due to *retro*-DA dominance, likely driven by furan aromatic stabilization and bridged olefin strain.

Acknowledgement

Thank You for Your Attention!