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Introduction

(=)-Gukulenin A (7) (-)-Gukulenin B (8)

No Reported Synthesis Nicolaou (2022) Phorbas gukulensis

® Two a-Tropolone Residues and 10 Asymmetric Stereocenters
® The Most Structurally Complex Tropolone Natural Products

® Efficacious and Well-Tolerated in Murine Models of Ovarian Cancer



Retrosynthetic Analysis
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Retrosynthetic Analysis
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Synthesis of Compound 27

OMe
H Directed Arylation Me OBn OMe
OMe Me OBn
LN Me 0Bn  Pd(OAc),, Ag,CO;, (BnO),P(O)OH Zn, HCI
+ > >
N - -
X 'AmOH, 105 °C L N7 THF/H,0
0 | N X
67% yield NH,
(0]
23 24 25 S38
e :
o | $1, MeOH/THF
: then Oxalic Acid, H,O
i Bu Bu 52% yield for 2 steps
S s1 . Py
OMe OMe
Me OBn Me OBn
KH, Dimethyl Carbonate, 90 °C
Me then Mel
CO,Me >99% yield
(0] (@)
27 26



Retrosynthetic Analysis

. . ’Pr OAC
Hemiketal Formation y
& —
Cleavage of C2 Acetate Formal 1,2-Addition ,
[ > I r> H Me
r Me 7 /
Oo. _O
(=)-Gukulenin A (7) 15 14
18 OEt
BusSn
° 7 SnBujy
Stille Cross Coupling
OMe
OMe
Me OBn Directed Arylation Grob Fragmentation
24 & Me OBn &
| FGI FaGl
< l & ]
H Me
=z
T CO,Me
23 N X (0]
0 27 21 16



Synthesis of Compound 32
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Synthesis of Compound 44
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Synthesis of Compound 7

OMe Stille Cross Coupling
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Mechanism for Hydrolysis of C2’ Acetate
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Retrosynthetic Analysis
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Synthesis Attempt
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Synthesis of Compound 53
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Synthesis of Compound 7
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Mechanism of 54 to 55 & 56
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Summary

24 Steps LLS, 2.5% from Commerical Reagents
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® First Total Synthesis of (—)-Gukulenin A

® Three-Component Cross Coupling; Thermal Carbonyl-ene Reaction

Gupta, V.; Wang, Z.; Combs, J. B.; Wright, T.; Herzon, S. B. et al. Science 2025, 390, aea9310



Writing Strategy

. B The existence of a seven-membered aromatic ring was first posited b
» First paragraph 9 P y

Dewar in 1950 to account for the physical properties of the natural product
stipitatic acid Dewar named this unconventional ring an a-tropolone and

estimated its aromatic stabilization energy to be ~47 kcal/mol, which is
Tropolone

considerably greater than that of benzenoid systems, such as phenol. This

aromatic character is enhanced by separation of charge in the carbon-
oxygen 1 bond. Consequently, a-tropolones present a strong molecular

l dipole and...

B (-)-Gukulenins A and B were first isolated from a sample of the marine
sponge Phorbas gukulensis found off the coast of Gageodo Island, South

. Korea, and are the most structurally complex tropolone natural products
Species and Structure y p P p

discovered to date. The pseudodimeric structure of (—)-gukulenin A

comprises two a-tropolone residues, 10 asymmetric stereocenters, and an
electrophilic a-acetoxy aldehyde. (-)-Gukulenin B is identical to (—)-guku-
lenin A save for the presence of a primary alcohol in place of the aldehyde
substituent.



Writing Strategy

» Last paragraph

B The synthetic strategy we developed has provided an enantioselective route to (-)-

gukulenin A. Our approach was inspired by a bio synthetic hypothesis and
Summary implemented experimentally by a three-component assembly, using the linchpin

reagent (E)-1,2-di(tributylstannyl)-1-ethoxyethylene. Although this route maximized

convergence, it also presented challenges because the C2 acetate substituent in
anhydrogukulenin A C2-acetate could not be successfully removed in the presence

of the C2' acetate residue. To circumvent this, we exploited the relative rates of
Challenges and

Committed Steps transmetalation of the a- and B-tributylstannyl substituents in 18 to achieve a high-

yielding, three-component coupling reaction that provides the dimeric methyl-
l tropolone ether, which contains differentially protected C2/C2' oxygen substituents.

B The development of three methods for the synthesis of methyl tropolone ethers

from ortho- benzophenone monoketals, a strategy for the synthesis of highly

Prospect substituted cyclopentanes, and the discovery of a thermal carbonyl-ene reaction

formed the foundation of our successful approach and may find use in other
contexts.



Representative Examples

® Given the established affinity of a- tropolones toward divalent metals this finding raises the
intriguing possibility that (—)-gukulenin A may bind two discrete metalloproteins... (adj. B#aY; 35|
AANRERY)

® Although this residue is fully dispensable in the monomeric series, dimeric tropolones lacking this
residue displayed decreased potency relative to (—=)-gukulenin A... (adj. AJER T, TPHER)

® Fifteen discrete monomeric and dimeric gukulenin derivatives were designed and synthesized to

evaluate the effects of dimerization, the a- tropolone residues. (adj. B&I8Y; 7 S8Y)
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