Literature Report 7

Asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with a new trifluoromethoxylation reagent

> Reporter: Huan-Ping Xie Checker: Xiao-Yong Zhai Date: 2018/09/17

Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. Nat. Chem. 2017, 9, 546.

2 Bromotrifluoromethoxylation of Alkenes (TFMS)

3 Trifluoromethoxylation-Halogenation of Arynes (TFBz)

Biography

Pingping Tang

Areas of interest:

- Total synthesis of bioactive natural product and methodology development
- Fluorination chemistry

Research experience:

- **2012 Present** Professor, Nankai University.
- 2008 2012 Postdoctoral associate, Harvard University (Prof. Tobias Ritter);
- **2007 2008** Assistant researcher, SIOC;
- **2002 2007** Ph.D., SIOC. (Prof. Biao Yu);
- **1998 2002** B.S., Nankai University;

- Strong Electron-Withdrawing Effect
- High Lipophilicity $OCF_3(1.04) > CF_3(0.88) > CH_3(0.52) > OCH_3(-0.02)$

Challenges:

- Reversible decomposition of trifluoromethoxide anion
- \blacklozenge β -Fluoride elimination from transition-metal-trifluoromethoxide complexes

• Deoxyfluorination of fluoroformates

ArOH +
$$COF_2 \longrightarrow HF + ArO F - \frac{SF_4}{160-175 °C} + ArOCF_3$$

SIGHT Stress Stres

Sheppard, W. et al. J. Org. Chem. 1964, 29, 1.

• Oxidative Desulfurization-Fluorination

Hiyama, T. et al. Tetrahedron Lett. 1992, 33, 4173.

• Electrophilic trifluoromethylation of hydroxyl groups

Umemoto, T. et al. J. Org. Chem. 2007, 72, 6905.

Togni, A. et al. Angew. Chem. Int. Ed. 2009, 48, 4332.

• OCF₃ Migration

Ngai, M.-Y. et al. Angew. Chem. Int. Ed. 2014, 53, 14559.

Mechanism: (ion-pair formation)

• Oxidative Trifluoromethylation

Qing, F. et al. Angew. Chem. Int. Ed. 2015, 54, 11839.

• Fluorodecarboxylation

Hartwig, J. F. et al. Angew. Chem. Int. Ed. 2016, 55, 9758.

Trifluoromethoxylation reagents:

Tang, P. et al. Nat. Chem. 2017, 9, 546.

Preparation of Trifluoromethyl Arylsulfonate

Togni, A. et al. Chem. Commun. 2009, 5993.

Bromotrifluoromethoxylation of Alkenes

Tang, P. et al. Nat. Chem. 2017, 9, 546.

Reaction Optimization

Í		+ OCF ₃ DB	AgF/L Fluoride DMH (1.0 eo	quiv)	OCF ₃	
F		MeCN	MeCN/DCM, 25 to -20 °C			
	1a	2		F ~	<u>3a</u>	
Entry ^a	[OCF ₃]	Fluoride	L	Yield (3a , %) ^b	e.r. ^c	
1	2a	NaF	L1	93	90:10	
2	2a	KF	L1	98	91:9	
3	2 a	CsF	L1	98	91.5:8.5	
4	2b	CsF	L1	97	90:10	
5	2c	CsF	L1	75	91.5:8.5	
6	2d	CsF	L1	94	90:10	
7	2a	CsF	L2	70	22.5:77.5	
8	2a	CsF	L3	54	52:48	
9	2a	CsF	L4	0		

^a Reaction conditions: styrene **1a** (1.0 equiv.), **2** (3.0 equiv.), AgF (30 mol%), chiral ligand (10 mol%), DBDMH (1.0 equiv.), fluoride ion (2.0 equiv.), 2:1 (v:v) MeCN/DCM, N₂ atmosphere, 25 to -20 °C. ^b Yields were determined by ¹⁹F NMR with benzotrifluoride as a standard. ^c The enantiomeric ratios (e.r.) were determined by chiral GC analysis.

Reaction Optimization

Substrate Scope

Substrate Scope-Complex Small Molecules

Hu, J. et al. J. Am. Chem. Soc. 2018, 140, 6801.

Preparation of TFBz

Reaction Optimization

	TMS + O OTf Ph OCF ₃	+ Ph	→ ^{Br} Fluoride salt Solvent, rt,12 h	OCF ₃ Br
2a	1a	3a		4a
Entry ^a	Fluoride salt	Solvent	Conv. (2a , %) ^b	Yield (4a , %) ^b
1	TASF	THF	100	0
2	TBAF	THF	19	0
3	KF/18-C-6	THF	100	49
4	KF/18-C-6	DME	100	51
5	KF/18-C-6	Diglyme	100	64
6	KF/18-C-6	EtOAc	100	67
7	KF/ <i>cis</i> -Dcy-18-C-6	EtOAc	100	76
8 ^c	KF/cis-Dcy-18-C-6	EtOAc	100	81

^aConditions: **2a** (0.05 mmol), **1a** (0.125 mmol), **3a** (0.2 mmol), fluoride salt (0.2 mmol), solvent (2.0 mL), rt, 12 h. ^bYields and conversions were determined by ¹⁹F NMR with PhCF₃ as internal standard. In all cases, the conversion of **1a** was 100%. ^cOptimized conditions: **2a** (0.05 mmol), **1a** (0.15 mmol), **3a** (0.2 mmol), KF (0.225 mmol), *cis*-DCy-18-C-6 (0.225 mmol), EtOAc (1.0 mL), rt, 12 h.

Substrate Scope

Substrate Scope

Mechanistic Investigations

Summary

Tang, P. et al. Nat. Chem. 2017, 9, 546.

Hu, J. et al. J. Am. Chem. Soc. 2018, 140, 6801.

The First Paragraph

The development of new methods for the introduction of fluorine into small molecules has recently received significant attention due to the growing importance of organic compounds in pharmaceuticals, fluorinated agrochemicals and materials. In particular, the trifluoromethoxy group (OCF_3) is of great interest in new drug and agrochemical design because of its electronwithdrawing effects and high lipophilicity.

However, due to the reversible decomposition of trifluoromethoxide anion to afford fluoride and fluorophosgene, as well as β -fluoride elimination from transition-metal-trifluoromethoxide complexes, methods for the introduction of this functional group remain a significant challenge. Furthermore, to the best of our knowledge, no catalytic enantioselective trifluoromethoxylation reaction has been reported to date.

have developed an asymmetric silver-catalysed We intermolecular bromotrifluoromethoxylation of alkenes with TFMS as a new trifluoromethoxylation reagent. This new method offers direct access to a variety of trifluoromethoxylated compounds from olefin substrates including natural products and their derivatives. Compared to other trifluoromethoxylation reagents, TFMS is easily prepared and thermally stable with good reactivity.

Additionally, the reaction tolerates a wide range of functional groups and is amenable to gram-scale synthesis. With its operational simplicity and mild conditions, this method could enable wide applications in pharmaceutical and agrochemical research and development for the synthesis of trifluoromethoxylated compounds.

Acknowledgement

Thanks for your kind attention!

