Enantioselective Formal Total Syntheses of
Didehydrostemofoline and Isodidehydrostemofoline through
a Catalytic Dipolar Cycloaddition Cascade

Reporter: Zhang-Pei Chen
Checker : Chang-Bin Yu

Date: 2012/10/24

Martin, S. F. et al.
Angew. Chem. Int. Ed. 2012, 51, 10596-10599.




-

The stemofoline family of natural products
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@ First reported in 1970; Limited syntheses success:
Kende (1999, (£)-5); Overman (2003, (%)-1 and (%)-4) /




Overman’s strategy
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Aza-Cope-Mannich Reaction

Overman, L. E. et al. J. Am. Chem. Soc. 2003, 125, 15284-15285.
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Overman’s work
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Martin’s strategy
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Martin's work
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Summary

Overman’s work

@ Total synthesis of (+)-1 and (£)-4
€ Key reactions:

»Aza-Cope-Mannich Rearrangement
» Julia-Kocienski Olefination
» Corey-Winter Olefination

Martin’'s work

MeO

didehydrostemofoline (1)

€ Prepared the key intermediate 36 in enantiomerically pure form

and formal total synthesis of 1, 2, 4, 6
€®Key reactions:

» Catalytic Dipolar Cycloaddition Cascade
» Julia-Kocienski Olefination
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Plants of the Stemonacea family, which are indigenous to a number of areas
In Southeast Asia, have long been used in traditional oriental medicine for
treating a variety of ailments. Extraction of the roots and leaves of these
plants have yielded a number of biologically active alkaloids that have been
targets of many synthetic investigations. Arguably the most complex
members of the Stemona alkaloids are those belonging to the stemofoline
family, which are characterized by a densely functionalized, caged
hexacyclic architecture and differ in the geometry of the C11-C12 double
bond and the oxidation state of the butyl side chain at C3. These alkaloids,
which were first reported by Irie and co-workers in 1970 and later isolated
from other Stemona species, exhibit strong insecticidal activity because they
act as insect acetylcholine receptor antagonists. Didehydrostemofoline is not
only the most potent acetylcholine receptor antagonist, but it also exhibits in
vivo anti-oxytocin activity as well as antitumor activity against gastric
carcinoma. A recent study has shown that stemofoline (2) increases the
sensitivity of anticancer drugs such as vinblastine, paclitaxel, and
doxorubicin by reversal of P-glycoprotein mediated multi-drug resistance. A
number of semisynthetic analogs of these alkaloids have been prepared and
found to exhibit acetylcholinesterase inhibitory activity.

\ /




4 N

In summary, the tricyclic compound 36, a key intermediate in Overman’s
elegant synthesis of didehydrostemofoline (1) and isodidehydrostemofoline
(4), has been prepared in enantiomerically pure form, thereby completing
the first enantioselective approach to these alkaloids. Inasmuch as 1 has
also been transformed into other stemofoline alkaloids, this accomplishment
also constitutes a formal synthesis of many other members of the
stemofoline family of natural products. The synthesis begins with
commercially available 2-deoxy-D-ribose and features a novel cascade of
reactions that culminates in the intramolecular dipolar cycloaddition of an
acyclic diazo imine intermediate to form the cage-like, tricyclic core of the
stemofoline alkaloids. Further applications of similar cascade reactions to
complex molecule synthesis are in progress as iIs the use of 22 as an
iIntermediate in even shorter routes to the stemofoline alkaloids. The results
of these investigations will be reported in due course.




