

Total Synthesis of Englerin A

[Nicolaou, K. C. et al J. Am. Chem. Soc. 2010, 132, ASAP.] Xiao-Yu Zhou Checker: Duo-Sheng Wang 22/06/2010

(-)-englerin A [(-)-1]

 $\begin{array}{l} \mathsf{R} = \mathsf{OH}, \mbox{ (-)-englerin B [(-)-2]} \\ \mathsf{R} = \mathsf{OAc}, \mbox{ (-)-englerin B acetate [(-)-3]} \end{array}$

Retrosynthetic Disconnection

Retrosynthetic Disconnection

Synthesis of Ketoester 16

Synthesis of Ketoester 16

Synthesis of Ketoester 16

16

(±)-englerin A [(±)-1]

Asymmetric Synthesis of 4

Echavarren, A. M. et al Angew. Chem. Int. Ed. 2010, 49, 3517-3519.

Englerin A (1) is a newly discovered guaiane sesquiterpene from the stem bark of *Phyllanthus engleri* collected in Tanzania. Its importance derives from its potent and selective growth inhibitory (GI) activities against renal cancer cells. Its unique structure includes a tricyclic motif carrying two esters, one to a cinnamic acid and the other to a glycolic acid residue. The latter is apparently crucial for its potency and selectivity, since englerin B (2) and englerin B acetate (3) showed significant loss of potency and selectivity toward renal cancer cells. Intrigued by the structure and biological properties of englerin A (1) as a lead compound for drug discovery, we initiated a program directed at its total synthesis. Herein we report the total synthesis of englerin A [(\pm)-**1**], englerin B $[(\pm)-2]$, and englerin B acetate $[(\pm)-3]$ from simple starting materials. In addition, a formal asymmetric synthesis of these compounds has also been accomplished by reaching a late-stage key intermediate in its optically active form.

The described chemistry provides a ready access to englerins A and B and englerin B acetate (1-3). A formal asymmetric total synthesis of these compounds has also been demonstrated through the synthesis of optically active advanced key intermediate bicyclic enone 4. The synthetic strategy employed features a [5 + 2] cycloaddition reaction of oxopyrilium species **5** with appropriate acrylate an esters. stereoselective Luche and Crabtree reductions, and a Baeyer-Villiger oxidation to secure the tricyclic core onto which the two ester side chains were attached through Yamaguchi esterifications. Biological evaluations of selected synthesized compounds provided valuable structure-activity relationships for future investigations toward drug discovery and development in cancer chemotherapy.

