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Discovering new reactions for synthesis through C-H activation
1 Ligand controlled C(sp3) H C H activation;1. Ligand-controlled C(sp3)-H C-H activation;
2. C-H bonds C-H activation directed by a U-shaped template.
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Introduction

Carbon–hydrogen bond functionalization (C–H functionalization) is a type of
reaction in which a carbon hydrogen bond is cleaved and replaced with a carbon Xreaction in which a carbon-hydrogen bond is cleaved and replaced with a carbon-X
bond (where X is usually carbon, oxygen or nitrogen). The term usually implies that
a transition metal is involved in the C-H cleavage process. Reactions classified by
the term typically involve the hydrocarbon first to react with a metal catalyst to
create an organometallic complex in which the hydrocarbon is coordinated to the
inner-sphere of a metal, either via an intermediate "alkane or arene complex" or as
a transition state leading to a "M−C" intermediate.
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Introduction

Two Strategies for Directed C-H Activation

i t ll d di ti t i t di tipre-installed directing groups transient directing groups

C GDH [M] C GDH [M]
DG: directing group

C GDH [M]

Disadvantange: requires installation
and removal of the directing group C GDH [M]



Pioneering Examples of Reversibly Linked Directing Groups
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Chelation-Assisted Intermolecular Hydroacylation: Direct 
Synthesis of Ketone from Aldehyde and 1-Alkene
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Proposed Catalytic Cycle for Ligand-Assisted Hydroacylation
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The Catalytic Intermolecular Orthoarylation of Phenols

12Bedford, R. B. et al. Angew. Chem. Int. Ed. 2003, 42, 112-114.
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Plausible Reaction Mechanism
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Regioselective Ketone α-Alkylation with Simple Olefins via
Dual Activation

14Dong, G. et al. Scince 2014, 345, 68-72.



Different Approaches to Ketone Alkylation

A Enolate Alkylation
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Regioselective Ketone α-Alkylation with Simple Olefins 
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Regioselective Ketone α-Alkylation with Simple Olefins 
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Regioselective Ketone α-Alkylation with Simple Olefins 
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Regioselective Ketone α-alkylation with Simple Olefins 
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Design of a Bifunctional Catalyst and Proposed Catalytic Cycle
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Practical Direct α-Arylation of Cyclopentanones by 
Palladium/Enamine Cooperative Catalysis

22Dong, G. et al. Angew. Chem. Int. Ed. 2016, 55, 2559–2563.



Proposed Strategy
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C(sp3)-H Arylation Using Acid as Transient Directing Group

C(sp3)-H Activation of Peptides

O

Design of Transient Amino Acid Directing Group
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Palladium-Catalyzed Benzylic C(sp3)-H Arylation of Aldehydes
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Palladium-Catalyzed Benzylic C(sp3)-H Arylation of Aldehydes
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Palladium-Catalyzed Benzylic C(sp3)-H Arylation of Aldehydes
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Palladium-Catalyzed Benzylic C(sp3)-H Arylation Ketones



Palladium-Catalyzed Benzylic C(sp3)-H Arylation Ketones
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Palladium-Catalyzed Enantioselective Benzylic C(sp3)-H 
Arylation Aldehydes
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Palladium-Catalyzed Enantioselective Benzylic C(sp3)-H 
Arylation Aldehydes
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Summary

Jun’s work
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Precoordination of a metal with functional groups in substrates has been
extensively exploited to control selectivity and promote reactivity in metal-
catalyzed or –mediated reactions. The same approach has beencatalyzed or mediated reactions. The same approach has been
successfully implemented in directed C–H activation reactions. However,
the covalent installation and removal of directing groups is a major
drawback for synthetic applications. First, an additional two steps must bey pp , p
added to the synthetic sequence. Second, the conditions for installation or
removal of the directing groups are sometimes incompatible with other
functional groups present in advanced synthetic intermediates. It is
therefore highly desirable to devise a functionally tolerant reagent that can
be reversibly linked to the substrate and can serve as a directing group.
Upon C–H activation and subsequent functionalization, this reagent would
dissociate from the product and transiently link to another substrate
molecule so that only a catalytic quantity of the directing group would be
needed. This approach has been successfully implemented in Rh(I)-

t l d C( 2) H ti ti ti i b f i icatalyzed C(sp2)–H activation reactions in a number of pioneering
examples. Jun et al. reported the use of 2-amino pyridine as a transient
directing group for Rh-catalyzed activation of aldehydic C–H bonds.
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Recently, using a related strategy, Mo and Dong reported a Rh-catalyzed
α-alkylation of ketones via a vinyl C–H activation step, featuring an
enamine intermediate with a pyridine moiety as the transient directing
group. Bedford et al. developed a Rh-catalyzed ortho-arylation through
reversible in situ transesterification of catalytic amounts of phosphinite
li d ith th h l b t tligands with the phenol substrate.
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