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Introduction

Proton-coupled electron transfer (PCET)
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R d t i hi h l t d t h d i t dRedox events in which an electron and proton are exchanged in a concerted
elementary step are commonly referred to as proton-coupled electron transfers
(PCETs). PCETs are known to operate in numerous important biological redox
processes, as well as recent inorganic technologies for small molecule activation.p , g g
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Proton-coupled electron transfer (PCET)
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Conjugate amination enabled by homolytic bond-weakening
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Remote sp3 C-H bonds activation by PCET 

O O

Classical Hofmann-Löffler-Freytag reactions

R N
R'

HX

R N
R'

XH

h

H
N•

RO

1,5-HAT N

RO

•X •X

H

R' R'
•

• N-functionalization required • No methods for the C-C bond formation

Challenges in catalytic homolysis of strong N-H bonds
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• No known catalysts for selective homolysis of strong N-alkyl amide N-H bonds
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Remote sp3 C-H bonds activation by PCET 
Catalytic C-H alkylation enabled by PCET
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• Excited-state iridium oxidant and a weak phosphate base cooperatively serve
to remove both a proton and an electron from an amide substrate.

• Undergo a catalytic variant of the classical Hofmann–Löffler–Freytag reaction.g y y g
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Optimization studies

CF3F

Entry Photocatalyst Yield (%)

1 [Ir(dF(CF3)ppy)2(bpy)]PF6 (A) 28

N

N

R1

R2

R2

N

N

F
F3C

Ir(III)

1 [Ir(dF(CF3)ppy)2(bpy)]PF6 (A) 28

2 [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (B) 10

3 [Ir(dF(CF3)ppy)2(5,5’-dFbpy)]PF6 (C) 25

4 [Ir(dF(CF3)ppy)2(4 4’-dCF3bpy)]PF6 (D) 78
R1

F F

A R1 = H, R2 = H
B R1 = H, R2 = t-Bu
C R1 = F R2 = H

4 [Ir(dF(CF3)ppy)2(4,4 dCF3bpy)]PF6 (D) 78

5 [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 (E) 82

Entry Change from entry 5 Yield (%)
C R F, R H
D R1 = H, R2 = CF3
E R1 = CF3, R2 = H

6 No light 0

7 No photocatalyst 0

8 No NBu4OP(O)(OBu)2 0

9 0.5 mol % photocatalyst 26

10 1.0 eq. of methyl vinyl ketone 69

11 20 mol% phosphate 58

12 0.4 M PhCF3 76
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Substrate scope
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Substrate scope 

Intermolecular C-H  alkylations



Proposed catalytic cycle



Remote sp3 C-H bonds activation by Rovis
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Proposed photocatalytic cycle
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Regioselective functionalization
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Regioselective functionalization
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The first paragraph

Despite advances in hydrogen atom transfer (HAT) catalysis, there are
tl l l HAT t l t th t bl f h l i thcurrently no molecular HAT catalysts that are capable of homolysing the

strong nitrogen–hydrogen (N–H) bonds of N-alkyl amides. The
motivation to develop amide homolysis protocols stems from the utility of
the resultant amidyl radicals, which are involved in various synthetically
useful transformations, including olefin amination and directed carbon–
hydrogen (C H) bond functionalization In the latter process a subsethydrogen (C–H) bond functionalization. In the latter process—a subset
of the classical Hofmann–Löffler–Freytag reaction—amidyl radicals
remove hydrogen atoms from unactivated aliphatic C–H bonds. Although
powerful, these transformations typically require oxidative N-
prefunctionalization of the amide starting materials to achieve efficient
amidyl generation. Moreover, because these N-activating groups areamidyl generation. Moreover, because these N activating groups are
often incorporated into the final products, these methods are generally
not amenable to the direct construction of carbon–carbon (C–C) bonds.



The first paragraph

Here we report an approach that overcomes these limitations by
homolysing the N–H bonds of N-alkyl amides via proton-coupledhomolysing the N H bonds of N alkyl amides via proton coupled
electron transfer. In this protocol, an excited-state iridium photocatalyst
and a weak phosphate base cooperatively serve to remove both a

d l f id b i dproton and an electron from an amide substrate in a concerted
elementary step. The resultant amidyl radical intermediates are shown to
promote subsequent C–H abstraction and radical alkylation steps. Thisp q y p
C–H alkylation represents a catalytic variant of the Hofmann–Löffler–
Freytag reaction, using simple, unfunctionalized amides to direct the
formation of new C C bonds Given the prevalence of amides information of new C–C bonds. Given the prevalence of amides in
pharmaceuticals and natural products, we anticipate that this method will
simplify the synthesis and structural elaboration of amine-containing
targets. Moreover, this study demonstrates that concerted proton-
coupled electron transfer can enable homolytic activation of common
organic functional groups that are energetically inaccessible usingorganic functional groups that are energetically inaccessible using
traditional HAT-based approaches.


