Literature Report 2

Total Synthesis of Hybridaphniphylline B

Reporter: Xin-Wei Wang

Checker: Xiao-Yong Zhai

Date: 2018-4-16

Zhang, W.; Ding, M.; Li, J.; Guo, Z.; Lu, M.; Chen, Y.; Li, Ang. *J. Am. Chem. Soc.* **2018**, *140*, 4227–4231.

CV of Professor Ang Li

Ang Li

Background:

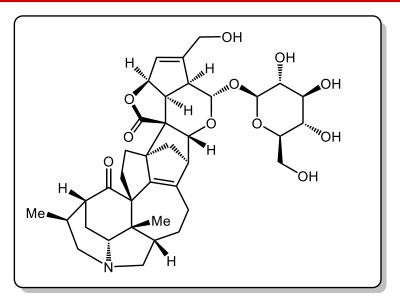
- □ 2000-2004 B.S. Peking University (Zhen Yang)
- □ 2004-2009 Ph.D. The Scripps Research Institute

(K. C. Nicolaou)

□ 2009-2010 Postdoc. The Scripps Research Institute

(K. C. Nicolaou)

□ 2010- Shanghai Institute of Organic Chemistry


Research:

Total synthesis of structually and biologically interesting natural products

Contents

- 1 Introduction
- Total Synthesis of Hybridaphniphylline B
- 3 Summary

Introduction

Hybridaphniphylline B

Daphniphyllum longeracemosum 长序虎皮楠

- Hybridaphniphylline B was isolated in 2013;
- The Daphniphyllum alkaloid family comprise more than 320 members with fascinating molecular architectures and diverse biological activities;
- It possesses 11 rings and 19 stereocenters.

Wang, F.; Mao, M.-F.; Wei, G.-Z.; Gao, Y.; Ren, F.-C.; Liu, J.-K. *Phytochemistry* **2013**, *95*, 428-435.

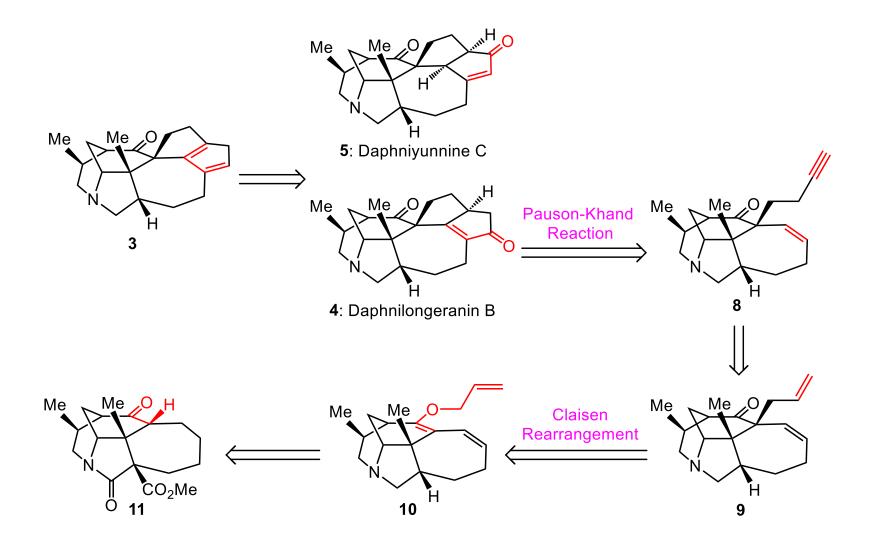
Seyferth-Gilbert Homologation

$$\begin{array}{c} \text{MeO-P} \\ \text{MeO} \\ \text{N}_2 \end{array} \begin{array}{c} \text{H} \\ \text{O}t\text{-Bu} \end{array} \begin{array}{c} \text{O} \\ \text{MeO} \\ \text{N}_2 \end{array} \begin{array}{c} \text{N}_2 \end{array} \begin{array}{c} \text{MeO-P} \\ \text{R}^1 \\ \text{R}^2 \end{array}$$

$$\longrightarrow$$
 R¹ $=$ R²

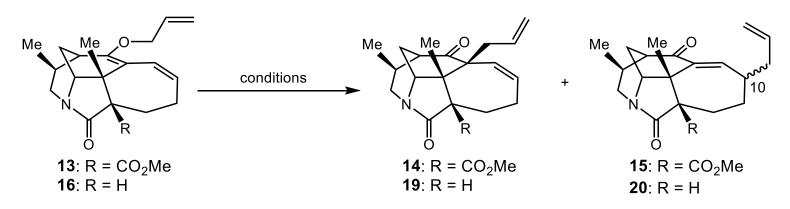
Pauson-Khand Reaction

From Name Reactions by Jie Jack Li


Lawesson's reagent

R¹ R² Lawesson's reagent
$$R^1$$
, $R^2 = H$, R , $R^2 = H$, R^2

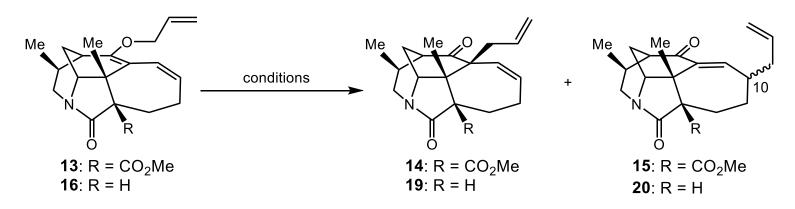
From Name Reactions by Jie Jack Li


Retrosynthetic Analysis

Retrosynthetic Analysis

Synthesis of Allyl Dienol Ether 13

Claisen Rearrangement of Allyl Dienol Ethers

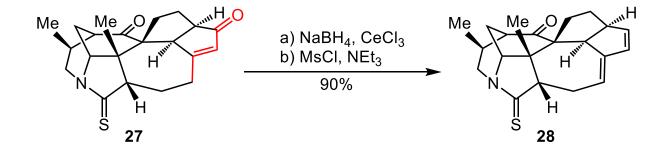


Entry	S	Conditions	Products (yield %)	
1 a,b	13	o-DCB, 140 °C, 3 h	14 (< 2)	15 ^c (31)
2 ^d	13	TiCl ₄ , AlMe ₃ , 0 °C	14 (< 5)	15 ^c (47)
3 ^{a,f}	16	o-DCB, 120 °C, 12 h	19 (48)	20 ^e (5)
4 <i>a</i> , <i>g</i>	16	<i>o</i> -DCB, 120 °C, 24 h	19 (46)	20 ^h (27)
5 ⁱ	16	aq. NaOH/MeOH, 80 °C, 3 d	19 (94)	20 ^e (0)

^a 47 mol % *i*-Pr₂NEt. ^b 53% recovery of **13**. ^c 10R: 10S = 1.7: 1. ^d 3.2 equiv [Ti], 3.2 equiv [Al], 100 wt % 4 Å MS, CH₂Cl₂. ^e 10R only. ^f 38% recovery of **16**. ^g 9% recovery of **16**. ^h 10R: 10S = 20: 1. ⁱ v [aq. NaOH (0.010 M)]: v (MeOH) = 5: 2.

Synthesis of Allyl Dienol Ether 16

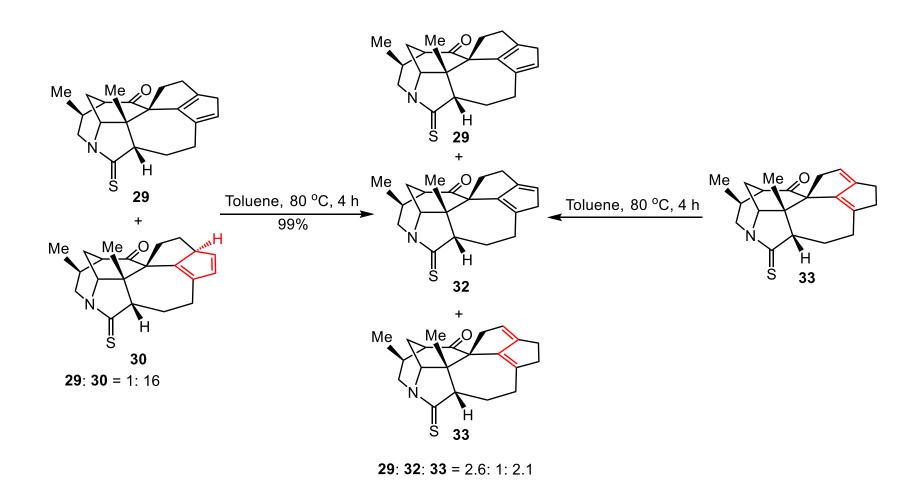
Claisen Rearrangement of Allyl Dienol Ethers


Entry	S	Conditions	Products (yield %)	
1 a,b	13	<i>o</i> -DCB, 140 °C, 3 h	14 (< 2)	15 ^c (31)
2 ^d	13	TiCl ₄ , AlMe ₃ , 0 °C	14 (< 5)	15 ^c (47)
3 ^{a,f}	16	o-DCB, 120 °C, 12 h	19 (48)	20 ^e (5)
4 <i>a</i> , <i>g</i>	16	o-DCB, 120 °C, 24 h	19 (46)	20 ^h (27)
5 ⁱ	16	aq. NaOH/MeOH, 80 °C, 3 d	19 (94)	20 ^e (0)

^a 47 mol % *i*-Pr₂NEt. ^b 53% recovery of **13**. ^c 10R: 10S = 1.7: 1. ^d 3.2 equiv [Ti], 3.2 equiv [Al], 100 wt % 4 Å MS, CH₂Cl₂. ^e 10R only. ^f 38% recovery of **16**. ^g 9% recovery of **16**. ^h 10R: 10S = 20: 1. ⁱ v [aq. NaOH (0.010 M)]: v (MeOH) = 5: 2.

Synthesis of Alkyne 23

Synthesis of Daphniphyllum alkaloid 4, 6, 7


Preparation of the Diene

Retrosynthetic Analysis

Preparation of the Diene

Preparation of the Diene

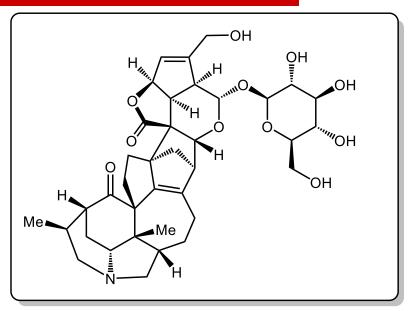
Preparation of the Dienophile

Preparation of the Dienophile

Nakatani, K.; Shimano, K.; Isoe, S. Bull.Chem. Soc. Jpn. 1993, 66, 2646-2652.

Preparation of the Dienophile

Synthesis of Hybridaphniphylline B


Synthesis of Hybridaphniphylline B

: **40**: **41**: **42** = 3.9: 1.7: 2.7: 1, 79% yield in total

Synthesis of Hybridaphniphylline B

1: Hybridaphniphyline B

Summary

Hybridaphniphylline B

- The first total synthesis Hybridaphniphylline B;
- 15 steps (the longest linear sequence), 2.9% overall yield;
- Bioinspired Diels-Alder reaction;
- To prepare the diene, achieve the first syntheses of 4, 6 and 7;
- Claisen rearrangement of an allyl dienol ether as a key step.

The First Paragraph

The Daphniphyllum alkaloid family comprise more than 320 members with fascinating molecular architectures and diverse biological activities. Synthetic chemists have been intrigued by the challenges posed by these molecules. The groups of Heathcock, Smith, Zhai, and Dixon accomplished elegant syntheses of a dozen of Daphniphyllum alkaloids. Our endeavors in this area also resulted in the syntheses of several members of this family. studies, we developed During the strategies such 6π electrocyclization/aromatization for constructing multisubstituted benzenes and alkyne cyclization for assembling azabicyclo [3.3.1] nonanes, which found further use in the syntheses of other natural products.

The First Paragraph

Hybridaphniphylline B is a complex Daphniphyllum alkaloids containing 11 rings and 19 stereogenic centers, which was isolated by Liu and coworkers from Daphniphyllum longeracemosum. Biogenetically, 1 may result from an intermolecular Diels-Alder reaction of naturally occurring deacetylasperuloside (2) and a putative cyclopentadiene (3). Our experience with bioinspired Diels-Alder cycloaddtion and Daphniphyllum alkaloid synthesis suggested an opportunity for an expedient route to the undecacyclic scaffold of 1. Here we report the first total synthesis of 1 as well as the syntheses of 4, 6 and 7.

The Last Paragraph

In summary, we have accomplished the first total synthesis of 1 exploiting an bioinspired Diels-Alder strategy. To prepare the diene, we developed a scalable route to 4 and achieved the first syntheses of 6 and 7. The late stage cycloaddition of dienophile 34 and the in situ generated diene forged the highly congested norbornene domain of 1.

Thanks for your attention

C-H Hydroxylation of Carbonyl Compounds

Jiao, N.; Liang, Y.-F. Angew. Chem. Int. Ed. 2014, 53, 548-552.