Literature Report

Enantioselective Total Synthesis of (-)-Pavidolide B

Reporter: Mu-Wang Chen
Checker: Hong-Qiang Shen
Date: 2017-10-16
Peng-Peng Zhang, Zhi-Ming Yan, Yuan-He Li, Jian-Xian Gong and Zhen Yang
J. Am. Chem. Soc. 2017, 139, 13989-13992.

CV of Zhen Yang

Education:

■ 1978-1982 B.S .; Shenyang Pharmaceutical University

- 1983-1986 M. S.; Shenyang Pharmaceutical University
- 1989-1992 Ph.D., The Chinese University of Hong Kong
- 1992-1995 Postdoc., The Scripps Research Institute
- 1998-2001 Professor, Harvard University School of Medicine

Research:

Our research interests span many fields, ranging from total synthesis of natural product, synthetic methodology, combinatorial chemistry and small molecule based chemical biology.

Contents

2 Enantioselective Total Synthesis of (-)-Pavidolide B

3 Total Synthesis of (\pm)-Epimeloscine and (\pm)-Meloscine

4 Synthesis of Melodinus Alkaloides
5 Summary

Introduction

- It was isolated from the marine soft coral Sinularia pavida by Lin group in 2012;
- It features a dome-sharped 6/5/7 fused-ring system and fully functionalized \mathbf{C} ring of pavidolide B, with seven contiguous stereocenters (one quaternary);
- The molecule shows high selective inhibitory activity against a number of human promyelocytic leukemia cell lines.

Retrosynthetic analysis of Pavidolide B (1)

Pavidolide B (1)

Retrosynthetic analysis of Pavidolide B (1)

Asymmetric synthesis of Precursor 4

(+)-carvone

Asymmetric synthesis of Precursor 4

Screening of the reaction of conditions

entry	conditions	solvent	time (h)	temp. $\left({ }^{\circ} \mathrm{C}\right)$	yield ${ }^{\text {a }}$ (\%)
1	PhSH, AIBN	toluene	9	60	trace
2	PhSH, AIBN	toluene	6	80	32
3	PhSH, AIBN	toluene	3	100	31
4	PhSH, AIBN	toluene	3	120	35
5	PhSSPh, AIBN, UV (250 W)	toluene	5	25	32
6	PhSSPh, AIBN, UV (250 W), AlMe_{3}	toluene	3	25	40-48
7	PhSSPh, BPO, UV (250 W)	toluene	5	25	23
${ }^{\text {a }}$ Isola	d yield				

Screening of the reaction of conditions

entry	conditions	solvent	time (h)	temp (${ }^{\circ} \mathrm{C}$)	yield ${ }^{\text {a }}$ (\%)
8	$\mathrm{PhSH}, \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2},$ $p \text {-toluidine, blue LEDs }$	MeCN	4	25	30
9	$\mathrm{PhSH}, \operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$, p-toluidine, blue LEDs	MeCN	5	25	47
10	PhSH, $\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$, p-toluidine, blue LEDs	MeCN	2	25	50
11	benzyl mercaptan, $\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$, p-toluidine, blue LEDs	MeCN	5	25	23
12	methyl thiolgycolate, $\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$, p-toluidine, blue LEDs	MeCN	2	25	25
${ }^{\text {a }}$ Isolated yield					

Asymmetric total synthesis of Pavidolide B (1)

Asymmetric total synthesis of Pavidolide B (1)

Pavidolide B (1)

Total synthesis of (\pm)-Meloscine and (\pm)-Epimeloscine

Retrosynthetic analysis of 14 \& 15

Synthesis of divinylcyclopropanecarboxylic acid

Synthesis of (\pm)-Epimeloscine and (\pm)-Meloscine

Synthesis of (\pm)-Epimeloscine and (\pm)-Meloscine

24a, $\mathrm{R}=\mathrm{Bn}, 83 \%$
24b, $R=H, 73 \%$
Epimeloscine 15, $\mathrm{R}=\mathrm{H}, 89 \%$

Meloscine 14, 83\%

Retrosynthetic analysis of Melodinus Alkaloids

Alexander F. G. Goldberg, Brian M. Stoltz. Org. Lett. 2011, 13, 4474.

Synthesis of the ABC ring system

33a

(1:2dr, 79\%)
33b

Closure of D ring

26

Summary

Introduction

The (-)-pavidolide B, a tetracyclic diterpenoid, was isolated in a small quantity from the marine soft coral Sinularia pavida by Lin and co-workers in 2012. This molecule shows high selective inhibitory activity against a number of human promyelocytic leukemia cell lines.
The efficient synthesis of the dome-shaped 5/5/6 fused-ring system and fully functionalized C ring of pavidolide B, with seven contiguous stereocenters (one of which is quaternary), poses huge challenges, and efficient strategies for successful execution need to be designed.

Summary

In summary, the asymmetric total synthesis of pavidolide B (1) was achieved for the first time in 10 linear steps with 16% overall yield. The key step is a radical-based cascade annulation of ester 4. This reaction assembles the fully functionalized tricyclic C ring of pavidolide B with formation of two $\mathrm{C}-\mathrm{C}$ bonds, two rings in a single step, and four stereocenters including the C4 quaternary center.

Selective Cu-Al Ox mediated enone allylic hydroxylation

Synthesis of cyclopropane

Synthesis of 18

