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Abstract: Previous enantioselective Pd0-catalyzed C@H acti-
vation reactions proceeding via the concerted metalation-
deprotonation mechanism employed either a chiral ancillary
ligand, a chiral base, or a bimolecular mixture thereof. This
study describes the development of new chiral bifunctional
ligands based on a binaphthyl scaffold which incorporates
both a phosphine and a carboxylic acid moiety. The optimal
ligand provided high yields and enantioselectivities for
a desymmetrizing C(sp2)@H arylation leading to 5,6-dihydro-
phenanthridines, whereas the corresponding monofunctional
ligands showed low enantioselectivities. The bifunctional
system proved applicable to a range of substituted dihydro-
phenanthridines, and allowed the parallel kinetic resolution of
racemic substrates.

In recent years, catalytic enantioselective C@H activation has
emerged as a simple and powerful method to construct
different types of stereogenic elements (central, planar or
axial) and to generate high-value-added enantioenriched
molecules.[1] In the context of palladium(0)-catalyzed C@H
activation/C@C coupling reactions proceeding via the cata-
lytic cycle depicted in Scheme 1a, the enantiodetermining
step is usually the C@H activation, which occurs by a con-
certed metalation-deprotonation [CMD, or ambiphilic metal
ligand activation (AMLA)] mechanism.[2] According to the
latter, the substrate, an ancillary ligand (L), and the base
performing the C@H bond cleavage (RYO2

@) are all coordi-
nated to the palladium center in the transition state.
Consistent with this mechanism, two types of chiral catalysts
have been successfully employed to induce enantioselectivity
in palladium(0)-catalyzed C(sp2)@H and C(sp3)@H activation
reactions (Scheme 1b): 1. Chiral ancillary ligands, more
specifically phosphorus(III) compounds[3, 4] and NHCs,[5] and
2. Chiral bases, for example, carboxylates[4a,b] and Binol-
derived phosphates.[6] The union of an ancillary ligand and the
base in the same bifunctional molecule has not been achieved
so far in the context of palladium(0)-catalyzed enantioselec-
tive C@H activation,[7] and is the subject of the work herein

(Scheme 1c). Such a bifunctional ligand would possess a more
organized structure, compared to the corresponding bimo-
lecular system, and might be broadly applicable to various
types of asymmetric C@H activation reactions operating by
a similar mechanism.

At the onset of our work, we chose to focus on phosphine-
carboxylate bifunctional ligands based on the classic binaph-
thalene scaffold (Schemes 1c and 2). A series of phosphine-
carboxylic acid preligands (L3–L7), with a variable number
(1–5) of methylene groups separating the carboxylic acid and
the binaphthyl core, were prepared from (R)-Binol by
adapting literature procedures from Uozumi, Hayashi, and
co-workers (Scheme 2).[8, 9] As a prototypical reaction, we
chose to investigate the enantioselective C@H arylation of the

Scheme 1. State-of-the-art and current chiral catalysts for palladium(0)-
catalyzed C@H arylation.
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aryl bromide 1a to give the 5,6-dihydrophenanthridine 2a.
This structural motif is present in various biologically active
substances, in particular, fluorogenic probes for the detection
of reactive oxygen species.[10] Related palladium(0)-catalyzed
desymmetrizing C(sp2)@H arylations generating carbon,[3a,c]

phosphorus,[11] or silicon[3b,h] stereocenters have been reported
using a chiral phosphorus ligand and an achiral base, but such
an enantioselective synthesis of 5,6-dihydrophenanthridines
has not been described.[12, 13]

Standard reaction conditions involved the combination of
the ligand (10 mol%) with Pd2dba3 as a carboxylate-free Pd
source (5 mol% Pd), a stoichiometric amount of cesium
carbonate, which is able to both deprotonate the carboxylic
acid function of the ligand to generate the active carboxylate
in situ, as well as regenerate it after the C@H activation step
(see Scheme 1a), and DME as the solvent at 120 88C in the
presence of molecular sieves to remove traces of potentially
deleterious water molecules.[6b] The enantioselectivity
obtained with bifunctional ligands was compared to the one
obtained with the corresponding monofunctional ligands L1

(MOP)[14] and L2, containing an ethyl ester instead of the
carboxylic acid. All bifunctional ligands, L3–L7, enabled the
reaction in very good yield, but with various levels of
enantioselectivities, thus showing the effect of the carbon
spacer length (Scheme 2). The enantioselectivity was max-
imal for the MOP-acetic acid hybrid ligand L3 containing one
methylene spacer, which furnished 2a in 91% yield and
93.5:6.5 e.r. Importantly, the enantioselectivity was much
lower in control experiments performed with the monofunc-
tional ligands L1 and L2, both in the absence and in the
presence of either pivalic or acetic acid additives. Moreover,
although the enantioselectivity was low with L6 and L7
bearing a longer carbon spacer, the sense of the induction was
inverted compared to that of L1 and L2. All together, these
results strongly indicate that the ligands L3–L7 operate in
a bifunctional mode. In addition, the most selective ligand,
L3, provided a much higher enantioselectivity than that of
comparable bimolecular systems composed of L1 or L2 and
AcOH or PivOH. Of note, we also tested other chiral ligands
such as BINAP, TADDOL-derived phosphoramidites, and
NHCs, which were previously employed in asymmetric
palladium(0)-catalyzed C@H activation reactions,[3, 4] but
they provided lower enantioselectivities than L3.[9]

In the search for additional improvement of the enantio-
selectivity, we first synthesized MOP-pivalic acid hybrids, L8
and L9, but the enantioselectivity was reduced compared to
those of L3 and L5, which lack the gem-dimethyl groups. The
modification of aryl substituents on the phosphorus atom
turned out to be more successful (L10–L13), with dimethyl-
and dimethoxy-substituted ligands (L10 and L11) affording
the highest enantiomeric ratio. Further refinement of reaction
conditions was performed using L10, including other carbon-
ate bases, solvents, and temperatures.[9] These studies allowed
a decrease in the amount of Cs2CO3 to 1.5 equivalents and the
temperature to 80 88C, and led to an e.r. value of 98.5:1.5 with
a 92 % yield on a 1 mmol (fivefold) scale (Scheme 3a).
Importantly, a control experiment performed with 1 equiv-
alent of the potassium salt derived from L10, and in the
absence of cesium carbonate, still furnished 2a in 92% yield
with a slightly reduced e.r. value of 95.5:4.5.[9] This experi-
ment further supports our hypothesis that this ligand is not
a mere bidentate ligand, but it also acts as the base
participating in the CMD mechanism (Scheme 1c). In this
case the main role of the stoichiometric carbonate is to
regenerate the active carboxylate ligand after the C@H
activation step.

By employing these optimal reaction conditions, we
studied the scope and limitations of the catalytic enantiose-
lective synthesis of 5,6-dihydrophenanthridines using Pd/L10
(Scheme 3). For less reactive substrates, the reaction was
performed at higher temperatures, as indicated. First, the
optimal leaving group was found to be a bromide (Sche-
me 3a). Lower yields of 2a were obtained from the corre-
sponding iodide and chloride, and the triflate underwent
decomposition thus leading to none of the desired product.
Next, we studied the impact of the nitrogen substituent on the
reaction (Scheme 3b). The best results were obtained with
alkoxycarbonyl groups (2 a–c). With a tosyl group (2 d),
a diminished enantioselectivity was observed, whereas with

Scheme 2. Synthesized bifunctional ligands and their effect in enantio-
selective C(sp2)@H arylation. [a] The absolute configuration of 2a was
deduced from the X-ray crystal structure shown in Scheme 3.
[b] 15 mol%. dba= dibenzylideneacetone, DME= 1,2-dimethoxyethane,
M.S.= molecular sieves.
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methyl (2e) and trifluoroacetyl (2 f) groups the reaction was
sluggish and gave several decomposition products. With
bromide as the leaving group and methoxycarbonyl as the
N substituent, different types of R1 groups were introduced
on the bromine-containing aromatic ring, with equally
excellent yields and enantioselectivities (2g–m, Scheme 3c).
Of note, the X-ray diffraction analysis of a single crystal of 2k
allowed determination of its absolute configuration as R.[15] In
addition, substrates containing either a naphthalene (2n) or
a pyridine (2o) ring performed with similar efficiency and
enantioselectivity. Similarly, the reaction was compatible with
R2 substituents at various positions of the other aryl rings
(2p–v, Scheme 3d). In the case of 2s, the C@H arylation

occurred selectively at the most reactive position ortho to the
fluorine atom,[16] as shown by 1H-19F HOESY experiments.[9]

In contrast, a limitation was found when the connection of the
rings undergoing C@C coupling was changed (Scheme 3e). A
decrease in the yield and the enantioselectivity was indeed
observed for 2w–y, which contain different six- or seven-
membered bridging rings. Achieving efficient enantioselec-
tive syntheses of these motifs would likely require further
optimization of the ligand structure. For instance, using the
tBu-substituted ligand L12, instead of L10, significantly
improved the enantioselectivity in the formation of 2y.

Finally, inspired from the work of Kgndig and co-work-
ers,[5b] and more recently Cramer and co-workers,[17] in

Scheme 3. Scope and limitations of the enantioselective synthesis of 5,6-dihydrophenanthridines. [a] Yield determined by NMR spectroscopy.
[b] Performed at 120 88C. [c] Performed at 100 88C. [d] Performed at 140 88C. [e] Thermal ellipsoids shown at 50 % probability. [f ] Using L12 instead of
L10. The absolute configurations of other products were assigned by analogy to 2k. n.d. =not detected. Tf = trifluoromethanesulfonyl.
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C(sp3)@H and C(sp2)@H arylation, we examined the parallel
kinetic resolution (PKR) of the racemic substrates 3 and 4
(Scheme 4). This behavior is based on the fact that differently
substituted aryl groups undergo C@H arylation at similar
rates. Since a given enantiomer of the chiral catalyst always

selects the same enantiotopic aryl group, two enantioenriched
constitutional isomers with the same absolute configuration
can be obtained with a maximum of 50 % yield each. Indeed,
reacting 3 and 4 under standard reaction conditions led to
approximately 1:1 mixtures of the highly enantioenriched
isomers 5a/5b and 6a/6b in excellent combined yields. This
result is in line with previous reports,[5b,17] hence tending to
indicate the general character of PKR by palladium(0)-
catalyzed C@H activation.

In conclusion, chiral bifunctional phosphine/carboxylate
ligands based on a binaphthyl scaffold showed high efficiency
and enantioselectivity for a desymmetrizing C(sp2)@H aryla-
tion leading to 5,6-dihydrophenanthridines. In contrast, the
corresponding monofunctional ligands, lacking a carboxylic
acid function, induced only low enantioselectivities, thereby
demonstrating the added value of bifunctionality. This new
ligand type might show broad applicability to various types of
asymmetric C@H activation reactions operating by the CMD
mechanism.
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