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ABSTRACT: We have developed a new umpolung
strategy for catalytically forming a chiral α-alkoxyalkyl
anion from an aromatic aldehyde for use in asymmetric
synthesis. The reaction between aromatic aldehydes and
aryl or allyl electrophiles with a silylboronate utilizing a
chiral copper−N-heterocyclic carbene catalyst and a
palladium−bisphosphine catalyst in a synergistic manner
occurred with high enantioselectivities to deliver the
three-component coupling products, chiral silyl-protected
secondary alcohol derivatives. Our method features the
catalytic generation of enantioenriched chiral α-
alkoxyalkylcopper(I) intermediates from aldehydes and
their subsequent palladium-catalyzed stereospecific cross-
coupling.

Chiral α-heteroatom-substituted carbanions are attractive
C(sp3) nucleophiles for the organic synthesis of chiral

molecules. Specifically, α-alkoxyalkyl anions are highly valuable
in constructing chiral alcohols found in a majority of
pharmaceutical drugs and bioactive natural products.1 Conven-
tionally, chiral α-alkoxyalkyl anions are presynthesized as
stoichiometric organometallic reagents (Figure 1a, right).2−5

Hoppe and Hense2a prepared chiral α-alkoxyalkyllithium
compounds by enantiotopic α-deprotonation of aliphatic
alcohol derivatives with highly basic alkyllithium reagents
and stoichiometric amounts of chiral amines (Figure 1b). The
obtained α-alkoxyalkyllithiums could be converted into other
organometallic reagents, such as organozinc, organostannane,
and organoboron compounds. Alternatively, the asymmetric
reduction of acylmetal compounds such as acylsilanes or
acylstannanes, which are presynthesized in multistep oper-
ations, allows the preparation of chiral α-hydroxycarbanion
equivalents (Figure 1c).3 More recently, copper-catalyzed
enantioselective nucleophilic silylation and borylation of
carbonyl compounds have been introduced as new approaches
for the preparation of α-alkoxyalkylmetal compounds, but their
application to organic synthesis has been underdeveloped
(Figure 1d).4

Earlier we showed that a nucleophilic α-alkoxyalkylcopper-
(I) species was formed catalytically from aldehydes through
the addition of a silylcopper(I) species followed by a 1,2-Brook
rearrangement in the palladium-catalyzed cross-coupling with
aryl bromides.6,7 This prompted us to investigate whether the
process could be adapted to an asymmetric version by the use
of a chiral ligand in the copper catalyst (Figure 1e). Here we

report an asymmetric catalysis using aromatic aldehydes as
chiral α-alkoxyalkyl anions (Figure 1a, left). The reaction of
aromatic aldehydes and aryl or allyl electrophiles with a
silylboronate by the merger of a chiral copper−N-heterocyclic
carbene (NHC) catalyst and a palladium−bisphosphine
catalyst in a synergistic manner occurred with high
enantioselectivities to deliver the three-component coupling
products, chiral silyl-protected secondary alcohol derivatives.8

On the basis of our preliminary research with the achiral
catalyst system,6 various chiral NHC ligands on copper were
examined for catalytic activity and enantiocontrol in the cross-
coupling of o-tolualdehyde (1a) (0.3 mmol) and p-
b r omo c h l o r o b e n z e n e (2 a ) ( 0 . 2 mmo l ) w i t h
(dimethylphenylsilyl)boronic acid pinacol ester [PhMe2SiB-
(pin)] (0.3 mmol) in the presence of palladium(II)
acetylacetonate [Pd(acac)2] (5 mol %), 1,1′-bis-
(diisopropylphosphino)ferrocene (DIPPF) (10 mol %),
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Figure 1. Generation of chiral α-alkoxyalkyl anions.
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CuCl (25 mol %), a chiral imidazolinium salt (25 mol %), and
NaOSiMe3 (0.25 mmol) as a base in toluene at 60 °C (Table
1).9 Copper−NHC complexes were prepared in situ from

CuCl, L·HBF4, and NaOSiMe3. The ring-saturated C2-
symmetric NHC ligand [(S,S)-L1],10 which has two stereo-
genic carbon centers in the imidazolidine ring with two mesityl
groups at both nitrogen atoms, possessed slight catalytic
activity (20%) and enantioselectivity (21% ee) (entry 1).
Similar chiral NHC ligands bearing 3,5-di-tert-butylphenyl
(L2), 2-isopropylphenyl (L3)11 or 2-biphenyl (L4)12 groups
instead of the mesityl groups in L1 were examined (entries 2−
4). Among them, L4 was the most effective for the product
yield (60%) and enantioselectivity (86% ee) (entry 4).
Next, we prepared the new chiral NHC ligand L5 bearing a

2-(2,6-difluorophenyl)phenyl group instead of one of the 2-
biphenyl groups in L4 to modify the steric hindrance in close
proximity to the copper center. The Cu−L5 catalyst system
imparted an enantioselectivity of 87% ee, which was slightly

better than that of the system with the non-fluorinated NHC
ligand L4 (entry 5). Changing the 2-biphenyl group of L5 to a
2-isopropylphenyl group (L6) increased the product yield to
72% and the enantioselectivity to 89% ee (entry 6). The Cu
loading could be reduced to 15 mol % with a slightly increased
yield, and the high enantioselectivity remained unchanged
(entry 8). The enantioselectivity was further increased to 90%
ee by lowering the reaction temperature to 40 °C (entry 9).
The use of the corresponding non-fluorinated NHC ligand L7
resulted in a significant reduction in enantioselectivity (entry
7). Thus, the fluoro groups in L6 were important.
The steric and electronic nature of the alkoxide moiety of

the base was important (Table 1). Thus, the use of more basic
NaOtBu instead of NaOSiMe3 diminished the product yield
and enantioselectivity (entry 10). This result might be due to
the formation of achiral silyl(tert-butoxy)cuprate species upon
partial dissociation of the NHC ligand.13 The smaller and
weaker alkoxide base NaOMe induced no reaction (entry 11).
Table 2 summarizes the results of the reactions of various

aryl bromides under the Cu−L6 catalyst system.14 Bromo-
benzene and 2-bromonaphthalene reacted with 1a with high
enantioselectivities (3ab and 3ac). Because of the mildness of
the reaction conditions, various functional groups were
tolerated. For example, aryl bromides bearing fluoro,
trifluoromethyl, trifluoromethoxy, methoxycarbonyl, methoxy,
benzyl ether, THP ether, and pivaloyl substituents at the meta
or para position of the aromatic ring reacted to afford the
corresponding chiral benzhydryl silyl ether products with high
enantioselectivities (88−92% ee) (3ad−ak). Heteroaryl
bromides such as bromopyridine or bromothiophene were
compatible with the enantioselective reaction (3al and 3am).15

The range of aldehydes is also shown in Table 2.14

Benzaldehyde, p-tolualdehyde, and p-tert-butylbenzaldehyde
reacted with 2a with high enantioselectivities (3ba−da).
Functionalized benzaldehydes such as m-anisaldehyde, pipero-
nal, and 3-fluorobenzaldehyde underwent the coupling, giving
the corresponding chiral benzhydryl silyl ethers with useful
levels of enantioselectivity (3ea−ga). The reaction with 3-
thiophenecarboxaldehyde afforded the coupling product with
moderate enantiocontrol (3ha). Aliphatic aldehydes and
aromatic or aliphatic ketones did not participate in the
reaction (data not shown).16

A reaction mechanism consisting of two distinct catalytic
cycles, namely, copper and palladium catalysis, is illustrated in
Figure 2a.6 Initially, the reaction of chiral NHC-ligated copper
complex A, a silylboronate, and NaOSiMe3 forms silylcopper-
(I) species B and trimethylsilyloxyboronate. The enantiose-
lective addition of B across the CO bond of aldehyde 1
produces stereodefined α-silyl-substituted copper(I) alkoxide
C,4a which subsequently undergoes a stereospecific [1,2]-
Brook rearrangement to give chiral α-silyloxybenzylcopper(I)
species D.17 Next, the stereospecific Cu/Pd transmetalation
between D and arylpalladium(II) bromide F, which is
generated from oxidative addition of aryl bromide 2 to
palladium(0)−bisphosphine complex E, produces the corre-
sponding chiral organopalladium(II) complex G.18 Finally,
reductive elimination from G releases the enantioenriched
product 3 and regenerates the palladium(0) complex E for the
next catalytic cycle.
To obtain stereochemical information on the present

palladium/copper-catalyzed pathway, two-component reac-
tions between aldehydes and a silylboronate were examined.
For this study, we used L4 instead of L6 because of the

Table 1. Screening of Chiral NHC Ligands and Bases for
Cross-Coupling between 1a and 2a;a The HBF4 Salts of L2
and L5−L7 Were Newly Synthesized in This Study

entry
Cu cat.
mol % NHCd base

T
(°C)

yield
(%)

ee
(%)b

1 25 L1 NaOSiMe3 60 20 21
2 25 L2 NaOSiMe3 60 20 44
3 25 L3 NaOSiMe3 60 51 74
4 25 L4 NaOSiMe3 60 60 86
5 25 L5 NaOSiMe3 60 54 87
6 25 L6 NaOSiMe3 60 72 89
7 25 L7 NaOSiMe3 60 73 74
8c 15 L6 NaOSiMe3 60 78 89
9c 15 L6 NaOSiMe3 40 52 90
10 25 L6 NaOtBu 60 13 57
11 25 L6 NaOMe 60 0 −

aThe reactions were carried out with 1a (0.3 mmol), 2a (0.2 mmol),
PhMe2SiBpin (0.3 mmol), Pd(acac)2 (5 mol %), DIPPF (10 mol %),
CuCl/L·HBF4 (15 or 25 mol %), and alkoxide base (0.25 mmol) in
toluene (1.0 mL) at 40 or 60 °C for 3 h. DIPPF is 1,1′-
bis(diisopropylphosphino)ferrocene. bEnantiomeric excess deter-
mined by HPLC analysis. cNaOSiMe3 (0.23 mmol) was used. dThe
ligands are shown below:
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instability of the in situ-generated stoichiometric copper
complex with L6. The copper-catalyzed carbonyl addition of
a silylboronate to benzaldehyde (1b) using trimethylsilanol as
a proton source afforded (S)-α-silyl-substituted benzyl alcohol
4b in 52% isolated yield with 82% ee (Figure 2b).19 Next, the
reaction of a stoichiometric amount of a chiral silylcopper(I)
complex, which was prepared in situ from CuCl, L4·HBF4,
PhMe2SiB(pin), and NaOtBu (1:1:1:2), with deuterated
benzaldehyde-α-d1 (1b-d) was also performed without any
proton sources (Figure 2c). The reaction gave, after addition of

acetic acid, chiral deuterated benzyl silyl ether 5b-d with the S
configuration.20,21 The stereochemical outcomes observed in
the three-component reactions indicated that the copper-
mediated [1,2]-Brook rearrangement proceeded with inversion
of configuration (C → D; Figure 2a).22,23 Additionally,
comparison of the absolute configuration of 5b-d with that
of benzhydryl silyl ether 3ba obtained by the coupling reaction
with aryl bromide (Figure 2d) indicated that the Cu/Pd
transmetalation between stereodefined α-silyloxybenzylcopper-
(I) species D and arylpalladium(II) intermediate F could occur
with retention of configuration (D → G; Figure 2a).24

Finally, the present reaction was not limited to aryl
electrophiles as coupling partners but was also applicable to
different coupling partners. For example, the synergistic
palladium/copper-catalyzed cross-coupling reaction using
allylic carbonate 6a produced enantioenriched chiral homo-
allylic alcohol derivative 7aa with 80% ee in 70% yield
(Scheme 1).14 Without significant modification of the reaction
conditions, especially with respect to the chiral NHC ligand, a
high enantiomeric purity of the product is guaranteed.
In conclusion, asymmetric reactions of aromatic aldehydes

and aryl bromides with a silylboronate occurred with high
enantioselectivities to yield the three-component coupling
products, chiral silyl-protected secondary alcohol derivatives.
The reaction was enabled by the merging of a new chiral
copper−N-heterocyclic carbene catalyst and a palladium−
bisphosphine catalyst in a synergistic manner. Preliminary

Table 2. Substrate Scopea

aThe reactions were carried out with 1 (0.3 mmol), 2 (0.2 mmol),
PhMe2SiBpin (0.3 mmol), Pd(acac)2 (5 mol %), DIPPF (10 mol %),
CuCl/L6·HBF4 (15 mol %), and NaOSiMe3 (0.23 mmol) in toluene
(1.0 mL) at 40 °C for 3 h. The enantiomeric excess was determined
by HPLC analysis. bThe reaction temperature was increased to 60 °C.
cPd(acac)2 (2.5 mol %), DIPPF (5 mol %), CuCl/L6·HBF4 (10 mol
%), and NaOSiMe3 (0.22 mmol) were used, and the reaction
temperature was increased to 80 °C.

Figure 2. Mechanistic considerations.
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results showed that this palladium/copper catalysis is also
amenable to the reaction of an allylic carbonate as the coupling
partner. Our method features the catalytic generation of
enantioenriched chiral α-alkoxyalkylcopper(I) intermediates
from aldehydes and their subsequent palladium-catalyzed
stereospecific cross-coupling with aryl or allyl electrophiles.
This protocol provides a new umpolung strategy for catalyti-
cally forming a chiral α-alkoxyalkyl anion from an aromatic
aldehyde for use in asymmetric synthesis. Mechanistic
investigations aided by theoretical calculations are currently
ongoing in our laboratory.
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