Highly Enantioselective Aza-Michael Reaction between Alkyl Amines and β-Trifluoromethyl β-Aryl Nitroolefins

Reporter: Lian-Jin Liu Checker: Wen-Xue Huang Date: 12/01/2016

Peking University, Shenzhen Graduate School

Huang, Y. et al. Angew. Chem. Int. Ed. 2015, 54, 15414–15418.

- Introduction
- Enantioselective aza-Michael reaction with secondaryamine catalysis
- Enantioselective aza-Michael reaction with Brønsted acid catalysis
- Enantioselective aza-Michael reaction with noncovalent catalysis
- Summary

Introduction

(-)-Nocardicin A

Enantioselective aza-Michael reaction with secondary-amine catalysis

MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2006, 128, 9328-9329

Enantioselective aza-Michael reaction with secondary-amine catalysis

Jørgensen, K. A. et al. Angew. Chem. Int. Ed. 2007, 46, 1983-1987

Proposed catalytic cycle for aza-Michael reaction

Jørgensen, K. A. et al. J. Am. Chem. Soc. 2007, 46, 1983-1987

> Enantioselective aza-Michael reaction with Brønsted acid catalysis

Effect of the structure of the arylamine and catalyst

	Ph	$P_2 + Ar^1 NH_2 = \frac{1}{(2)^{1/2}} \frac{1}{t}$ BArF = (3,5-(CF_3)_2C_6H	r 2 · BArF 2 mol%) oluene °C, time F I₃)₄B ^Θ	NHAr ¹ NO ₂ 3a or 4a		
	(R) H H H Ar			Ar H N H 2 Ar		
Entry	Catalyst (Ar)	Ar ¹	Time [h]	Yield [%]	Ee [%]	Prod.
1	1a (H)	4-MeO-C ₆ H ₄	23	37	19	3a
2	1a (H)	2,4-(MeO) ₂ -C ₆ H ₃	23	42	41	4a
3	1b (Ph)	2,4-(MeO) ₂ -C ₆ H ₃	23	86	61	4a
4	2b (Ph)	2,4-(MeO) ₂ -C ₆ H ₃	27	87	83	4a
5	2c (3,4,5-F ₃ -C ₆ H ₂)	2,4-(MeO) ₂ -C ₆ H ₃	11	98	94	4a
6 ^a	2c (3,4,5-F ₃ -C ₆ H ₂)	2,4-(MeO) ₂ -C ₆ H ₃	12	98	95	4a

^aReaction was conducted at -15 °C.

Scope of nitroolefins

R	NO ₂ +	NH ₂	BArF (2 mol%) toluene -15 ℃, time	HN R	OMe NO ₂ 4
Entry	R	Time [h]	Yield [%]	Ee [%]	Prod.
1	$4-F-C_6H_4$	12	98	94	4b
2	4-CI-C ₆ H ₄	4	99	95	4c
3	4-Br-C ₆ H ₄	4	99	94	4d
4	4-Me-C ₆ H ₄	12	99	97	4e
5	3-MeO-C ₆ H ₄	4	99	93	4f
6	$3-Br-C_6H_4$	9	99	93	4g
7	$2-F-C_6H_4$	12	99	92	4h
8	1-naphthyl	19	99	91	4 i
9	2-naphthyl	19	99	95	4 j
10	3-furyl	24	89	94	4k
11 ^a	Me ₂ CHCH ₂	7	98	89	41
12 ^{a,b}	$Me(CH_2)_4$	0.5	93	87	4m

^a Diisopropyl ether was used as solvent instead of toluene.

^b Reaction was performed at room temperature.

Deprotection-Reprotection process

> Enantioselective aza-Michael reaction with noncovalent catalysis

noncovalent catalysis CF₃-substituted tertiary stereocenter up to 99% yield, 98% ee

> NHCs as non-covalent chiral catalysts for asymmetric reaction

Optimization of the reaction conditions

Huang, Y. et al. Angew. Chem. Int. Ed. 2015, 54, 15414-15418

> Optimization of the reaction conditions

Entry	Catalyst	Additive	Solvent	Yield [%]	Ee [%]
7	4g	HFIP, 4 Å MS	toluene	70	7
8	4h	HFIP, 4 Å MS	toluene	50	0
9 ^a	4d	HFIP, 4 Å MS	toluene	83	15
10	4d	HFIP, 4 Å MS	toluene	57	52
11	4d	HFIP, 4 Å MS	CH_2CI_2	70	3
12	4d	HFIP, 4 Å MS	THF	99	0
13	4d	HFIP, 4 Å MS	Et ₂ O	70	76
14	4d	HFIP, 4 Å MS	MTBE	85	36
15	4d	4 Å MS	toluene	23	87
16	4d	HFIP	toluene	25	4

^a The reaction was performed at -40 °C with 10 mol% of the catalyst.

Scope of the reaction with respect to the amine nucleophile

Huang, Y. et al. Angew. Chem. Int. Ed. 2015, 54, 15414-15418

The absolute configuration of product 3qa

Huang, Y. et al. Angew. Chem. Int. Ed. 2015, 54, 15414-15418

Scope of the reaction with respect to the nitroalkene

Huang, Y. et al. Angew. Chem. Int. Ed. 2015, 54, 15414-15418

Scope of the reaction with respect to the nitroalkene

Huang, Y. et al. Angew. Chem. Int. Ed. 2015, 54, 15414-15418

> Synthesis of CF₃-containing chiral heterocycles

Huang, Y. et al. Angew. Chem. Int. Ed. 2015, 54, 15414-15418

Proposed transition state and proton-shuttling mechanism

Summary

R¹ = alkyl HOMO-raising activation noncovalent catalysis Huang and co-workers CF₃-substituted tertiary stereocenter up to 99% yield, 98% ee The asymmetric aza-Michael reaction is arguably one of the most methods for the synthesis of important 1,2straightforward difunctionalized chiral building blocks, such as 1,2-diamines. Many successful combinations of nitrogen nucleophiles and electron-deficient olefins have been reported, with either Lewis acid catalysts or organocatalysts. However, two key problems remain largely unsolved: the use of alkyl amines as the nitrogen source, and the construction of tertiary stereocenters with a nitrogen substituent. Simple alkyl amines tend to form stable complexes with Lewis acids, which not only deactivates the catalyst, but also renders the aza-Michael reaction reversible.

In the case of organocatalysis, primary and secondary amines interfere with both LUMO-lowering iminium activation (competing imine/iminium formation) and proton catalysis (acid–base neutralization). As a result, research efforts have been mostly concentrated on modulating the basicity of the donor nitrogen atom.

In summary, we have developed the first highly enantioselective aza-Michael reaction of simple aliphatic amines. 1,2-Diamine analogues with a unique CF₃-bearing tertiary stereocenter can be prepared in high yield with high enantioselectivity. The noncovalent, HOMO-raising activation of the NHC overcomes the intrinsic problem of using a basic amine in LUMO-lowering catalysis. Furthermore, an acidic proton shuttle is used to prevent catalyst quenching and retain turnover. A dual role of the NHC is proposed: activation by hydrogen bonding and π - π stacking. We expect that this generic HOMO-raising noncovalent activation mode by NHCs will find wide application in enantioselective catalysis and cascade reactions.