Literature Report

Oxidative enantioselective α -fluorination of aliphatic aldehydes enabled by *N*-hetero-cyclic carbene catalysis

Reporter: Mu-Wang Chen Checker: Yue Ji Date: 2015-11-03

Wang, J. et al. Tsinghua University Angew. Chem. Int. Ed. 2015, 54, 656-659.

Contents

Introduction

2 Asymmetric NHC-catalyzed synthesis of α -fluorocarboxylic acid

3 NHC-catalyzed asymmetric fluorination reaction

Introduction

Purser, S. et al. Chem. Soc. Rev. 2008, 37, 320-330.

Introduction

Introduction

N-heterocyclic carbene catalyzed asymmetric hydration: direct synthesis of α -protio and α -deuterio α -chloro and α -fluoro carboxylic acids

Rovis, T. et al. J. Am. Chem. Soc. 2010, 132, 2860–2861.

Hemiaminal Formation

Scope of α -fluoro carboxylic acids

α -Deuteron in an asymmetric fashion using D₂O

Asymmetric NHC-catalyzed synthesis of α -fluoroamides from readily accessible α -fluoroenals

Rovis, T. et al. Chem. Sci. 2013, 4, 1674-1679.

Scope of α -fluoroamides

Transformations of α -fluoroamides

96% ee

Enantioselective synthesis of β , γ -unsaturated α -fluoroesters catalyzed by *N*-heterocyclic carbenes

Challenges:

- Regioselectivity (α versus γ)
- Mono-versus difluorination (enolizable product)
- Fluorination versus protonation

- Stereocontrol (small F atom)
- Product racemization (basic conditions)

Sun, J. et al. Angew. Chem. Int. Ed. 2012, 51, 10359-10363.

Ph OCO ₂ Me	H Fluorir solv	catalyst (20 mol Base (2.0 equiv) ne source (1.05 e ent (0.1 M), rt, 24	%) equiv) 4 h	OMe +	Ph	OMe + Ph	OMe 4
Entry	Precat.	Base	Fluorine source	Solvent	Yield of 2 (%)	Ee of 2 (%)	2:3:4
1	Α	NaOAc	F-TEDA	DCM	22	5	53:36:11
2	В	NaOAc	F-TEDA	DCM	32	75	66:27:7
3	С	NaOAc	F-TEDA	DCM	48	12	87:10:3
4	D	NaOAc	F-TEDA	DCM	n.r.	-	-
5	Е	NaOAc	F-TEDA	DCM	n.r.	-	-
6	В	NaOAc	F-Py	DCM	0	-	-
7	В	NaOAc	NFSI	DCM	20	94	67:33:0

8	В	NaOAc	NFSI	THF	<10	-	21:76:3
9	В	NaOAc	NFSI	CH ₃ CN	0	-	0:100:0
10	В	NaOAc	NFSI	CHCI ₃	55	92	82:18:0
11	В	NaOAc	NFSI	Benzene	26	91	61:39:0
12	В	DBU	NFSI	CHCI ₃	0	-	0:100:0
13	В	HCO ₂ Na	NFSI	CHCI ₃	n.r.	-	-
14	В	K ₃ PO ₄	NFSI	CHCI ₃	0	■ 38-38-38-18-18-38-38-38-18-38-38-18-38-38-38-38-38-38-38-38-38-38-38-38-38	0:100:0
15	В	-	NFSI	CHCI ₃	n.r.	-	-
16 ^a	В	NaOAc	NFSI	CHCI ₃	82	92	>98:1:1
17 ^{a,b}	В	NaOAc	NFSI	CHCI ₃	91	92	>98:1:1

Scope of α -fluoroesters

Scope of α -fluoroesters

Scope of α -fluoroesters

Transformations of α -fluorinated esters

Postulated mechanism

Oxidative enantioselective α-fluorination of aliphatic aldehydes enabled by *N*-heterocyclic carbene catalysis

Wang, J. et al. Angew. Chem. Int. Ed. 2015, 54, 656-659.

Optimization of the conditions

Optimization of the conditions

Entry	NHC	Base	Solvent	"F" reagent	3aa Yield (%)	3aa Ee (%)	4 Yield (%)	5
1	Α	K ₂ CO ₃	toluene	G6	n.r.	-	-	trace
2	В	K ₂ CO ₃	toluene	G6	66	74	10	trace
3	С	K_2CO_3	toluene	G6	84	92	<5	trace
4	D	K ₂ CO ₃	toluene	G6	86	92	<5	trace
5	Е	K ₂ CO ₃	toluene	G6	<5	-	12	trace
6	F	K ₂ CO ₃	toluene	G6	-	-	20	trace
7	D	K ₂ CO ₃	DCM	G6	56	93	<10	trace
8	D	K_2CO_3	THF	G6	46	86	<10	trace
9	D	K ₂ CO ₃	dioxane	G6	72	94	<5	trace

Optimization of the conditions

Entry	Base	"F" reagent	3aa Yield (%)	3aa Ee (%)	4 Yield (%)	5		
10	PhCO ₂ Na	G6	50	92	<5	trace		
11	K ₃ PO ₄	G6	77	94	<5	trace		
12	NaOAc	G6	78	96	<5	trace		
13 ^a	NaOAc	G6	84	96	<5	trace		
14	NaOAc	G1	n.r.	-	-	-		
15	NaOAc	G2	n.r.	-	-	-		
16	NaOAc	G3	n.r.	-	-	-		
17	NaOAc	G4	<5	-	-	-		
18	NaOAc	G5	31	83	-	-		
[a] NaOAc (4.0 equiv)								

Scope with respect to the alcohol

Scope with respect to the aldehyde

Scope with respect to the aldehyde

Transformations of α -fluorinated esters

Postulated mechanism

Summary

Rovis's work

Sun and Wang's work

Organofluorine compounds display a wide range of distinct physical properties which often render them valuable to the pharmaceutical companies and agrochemical industries. In particular, fluorine atom incorporation has become an effective tool for medicinal chemists to alter the bioactivity of drug candidates. Despite the broad-spectrum utility of such C-F bond containing compounds, it is remarkable to consider that only a few catalytic methods exist for the asymmetric installation of fluorine onto carbogenic frameworks and that most of these methods have focused on the generation of non-enolizable products such as α -alkyl- β -ketoesters. Given that chiral α -fluoro carbonyl compounds have been identified as highvalue synthons for chemical synthesis, great progress has been made by employing chiral metal complexes for electrophilic fluorination of activated Ketones, nucleophilic fluorination of ketenes, and using nucleophilic fluorine sources for enantioselective allylic fluorination. Enamine catalysis has furnished a number of protocols for highly enantioselective α -fluorination of aldehydes and ketones. Cinchona alkaloids have been effective for fluorination of carbon nucleophiles and in a dual catalysis mechanism to enable the fluorination of acyl chlorides. Recently, a combination of chiralanion phase-transfer catalysis and enamine catalysis has been reported to

generate α -branched α -fluoroketones. Surprisingly, despite the availability of a variety of N-heterocyclic carbene (NHC) catalysts. In contrast to the NHC-catalyzed α -C-C bond formation reaction the disclosures of enantioselective α -fluorination of simple aliphatic aldehydes catalyzed by chiral NHC catalysts has not yet been reported. Herein, we report the first example of oxidative enantioselective α -fluorination of simple aliphatic aldehydes catalyzed by an NHC catalyst. It is noteworthy that NFSI is disclosed not only as an electrophilic fluorinating resource but also as an oxidant in asymmetric organocatalysis.

In summary, the first study of an NHC-catalyzed oxidative enantioselective α -fluorination of simple aliphatic aldehydes using NFSI, which plays two roles, is presented. In the presence of an appropriate combination of a NHC precatalyst, a base, an oxidant (NFSI), and a "F" resource (NFSI), the C-F bond formation occurs directly at the a position of simple aliphatic aldehydes and proceeds with high to excellent enantioselectivities.

96% ee, 90% yield