Literature Report III

Regioselective Hydroarylation of Alkynes

Reporter: Zheng Gu Checker: Cong Liu Date: 2017-08-28

Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M. *J. Am. Chem. Soc.* **2017**, *139*, 10641-10644. Ding, D.; Mou, T.; Feng, M.; Jiang, X. *J. Am. Chem. Soc.* **2016**, *138*, 5218-5221.

1

Introduction

- Rh-Catalyzed asymmetric hydroheteroarylation of alkynes
- Au-Catalyzed regiodivergent hydroarylation of alkynes

Summary

CV of Vy M. Dong

Full Professor: University of California at Irvine

Education and Professional Appointments:

1998 B. S.	University of California at Irvine
2000 M. S.	University of California at Berkeley
2004 Ph. D.	California Institute of Technology
2006 Assistant Professor	University of Toronto
2010 Associate Professor	University of Toronto
2012 Full Professor	University of California at Irvine

Vy M. Dong

Research:

New reaction methods, enantioselective catalysis, and natural product synthesis.

Alkyne Hydrofunctionalization—Proposed Mechanism

Formation of C-O Bond via Rh- π -allyl Species

Breit, B. et al. J. Am. Chem. Soc. 2011, 133, 2386.

Breit, B. et al. Angew. Chem. Int. Ed. 2016, 55, 8440.

Formation of C-N Bond *via* Rh-π-allyl Species

Dong, V. M. et al. J. Am. Chem. Soc. 2015, 137, 8392.

Formation of Csp³-C Bond *via* Rh-π-allyl Species

Breit, B. et al. Org. Lett. 2016, 18, 124.

Dong, V. M. et al. Chem. Commun. 2016, 52, 5840.

Formation of Csp³-C Bond *via* Rh-π-allyl Species

Dong, V. M. et al. J. Am. Chem. Soc. 2017, 139, 1029.

Alkyne Hydroarylation—Nucleophilicity Effects

Mayr, H et al. J. Phys. Org. Chem. 2008, 21, 584-595.

Alkyne Hydroarylation—Ligand Effects

10

Alkyne Hydroarylation—Various Indoles

Alkyne Hydroarylation—Various Alkynes

Phenylallene Hydroarylation

Hydroarylation and Cascade Cyclization

Echavarren, A. M. et al. Chem. Eur. J. 2006, 11, 3155-3164.

Hydroarylation and Cascade Cyclization

Proposed Mechanism

Proposed Mechanism

para-Position Cyclization

para-Position Cyclization

ortho-Position Cyclization

Au/Ag Relay Cascade Cyclization

Cat.	Yield
(2,4- <i>t</i> Bu ₂ C ₆ H ₃ O) ₃ PAuOTf (5 mol%)	0%
(2,4- <i>t</i> Bu ₂ C ₆ H ₃ O) ₃ PAuCl (5 mol%) /AgOTf (10 mol%)	80%
AgOTf (10 mol%)	85%

Au/Ag Relay Cascade Cyclization

22

Summary

Jiang, X. et al. *J. Am. Chem. Soc.* **2016**, *138*, 5218. ²³

Aryl and heteroaryl rings can be used to increase nonbonding and electrostatic interactions between a small molecule and its macromolecule target. Among the top selling therapeutics, more than half contain aryl structures. Given the relevance of chirality in medicine, inventing enantioselective tools for introducing aromatic nucleophiles warrants pursuit. The hydroarylation of alkynes is a modern strategy for functionalizing aryl structures, where two simple functional groups are coupled with high atom economy. To date, however, this approach has been limited to generating achiral olefins.

Classic alkyne hydroarylations generate achiral vinylated arenes via mechanisms that involve alkyne activation with π -acids or arene activation to access aryl-metal species. In contrast, we imagined using metal-hydride catalysis to couple arenes with alkynes to form allylated products. In this communication, we disclose a regio- and enantioselective alkyne hydroheteroarylation using indoles.

We have demonstrated a regio- and enantioselective wav to hydrofunctionalize alkynes using indoles. The use of Rh-hydride catalysis to isomerize alkynes has enabled access to a complementary hydroheteroarylation motif. Moreover, our study demonstrates the potential of generating C-C bonds under mild conditions using both aromatic and heteroaromatic motifs. Given these promising results, our future studies will focus on enantio- and regioselective coupling using other classes of aromatic nucleophiles.

Thanks for your attention