Literature Report (10)

Enantioselective Hydroacylation of Ketones

Reporter: Yue Ji Checker: Shubo Hu Date: 2016/09/26

Dong, V. M. *et al. J. Am. Chem. Soc.* **2016**, *138*, 12013.

- Introduction
- > Rh-Catalyzed Enantioselective Hydroacylation of Ketones
- > Co-Catalyzed Enantioselective Hydroacylation of Ketones
- > Summary

An atom economical strategy for lactonization

Proposal for Tishchenko versus benzoin hydroacylation

Competing transformations for model substrate

Dong, V. M. *et al. J. Am. Chem. Soc.* **2008**, *130*, 2916. Tsuji, J. *et al. Tetrahedron Lett.* **1965**, *44*, 3969.

Dong, V. M. et al. J. Am. Chem. Soc. 2009, 131, 1077.

Dong, V. M. et al. J. Am. Chem. Soc. 2009, 131, 15608.

Counterion effects on reactivity

entry	Х	2a (%)	ee (%)	3a (%)	time
1	SbF_6	30	40	52	1 d
2	BF_4	76	29	24	1 d
3	OTf	> 95	81	< 5	0.5 h
4	OMs	> 95	91	trace	10 h
5	NO ₃	> 95	97	trace	7 h
6	CI	92	97	trace	3 d

Dong, V. M. et al. J. Am. Chem. Soc. 2009, 131, 15608.

R	Х	result		
alkyl	NO ₃	up to 97% yield, 98% ee		
aryl	OMs or OTf	up to 93% yield, 96% ee		

Dong, V. M. et al. J. Am. Chem. Soc. 2009, 131, 15608.

Ligand effect

Dong, V. M. et al. J. Am. Chem. Soc. 2016, 138, 12013.

Parameters impacting diastereocontrol

a. Solvent effect: ([Rh(C₂H₄)Cl]₂, 21 ^oC)

aprotic			pro				
2a	DME	toluene	DCE	THF	^t BuOH	^t AmOH	3a
anti	8:1	3:1	1.7:1	1.3:1	1:2	1:3	Syn

b. Temperature effect: [Rh(C₂H₄)₂Cl]₂

c. Counterion effect: $[Rh(COD)_2X]$ or $[Rh(COD)X]_2$

H/D crossover and kinetic isotope effect experiments

Mechanism

Transformations

KIE experiments

Mechanism

Yoshikai, N. et al. J. Am. Chem. Soc. 2014, 136, 16748.

Deuterium-labeling experiments

Summary

V. M. Dong

Rh-Catalyzed Enantioselective Hydroacylation of Ketones

Co-Catalyzed Enantioselective Hydroacylation of Ketones

N. Yoshikai

Cyclic architectures comprise a large number of natural products with diverse biological activity. Nature uses enzymes to access both stereoisomers of any bicycle through kinetic control. The use of metal catalysis to construct bicyclic motifs with high enantio- and diastereocontrol thus represents a modern challenge for organic synthesis. Inspired by the occurrence of bicyclic γ -lactones in natural products, we sought an atom-economical strategy to access both the syn and anti diastereoisomers by ketone hydroacylation. Toward this goal, we herein report the construction of bicyclic y-lactones featuring the rare activation of aliphatic aldehydes, without competitive decarbonylation.

By computational studies, we find that the syn bicycle **3a** is thermodynamically more stable than the anti isomer 2a. We recognize that the syn isomer can undergo a chair flip and thus has more conformational degrees of freedom than its anti counterpart. A survey of literature reveals that bond formation to generate related fused bicycles typically occurs to the carbonyl via the same side of the reactive tether, suggesting that such additions are rapid and irreversible. In contrast, our hydroacylation strategy enables access to both stereoisomers *via* kinetic control. Under our standard conditions, the *anti* and *syn* products do not interconvert, further supporting the idea that reductive elimination is irreversible. Further kinetic and computational studies are underway to better understand these effects to guide development of future stereodivergent strategies.