Literature Report IV

Carbonyl Catalysis Enables a Biomimetic Asymmetric Mannich Reaction

Reporter: Xin-Wei Wang Checker: Chang-Bin Yu Date: 2018-10-15

Guo, Q,-X. *et al. Chem. Sci.* **2014**, *5*, 1988. Zhao, B. *et al. Science* **2018**, *360*, 1438.

CV of Professor Baoguo Zhao

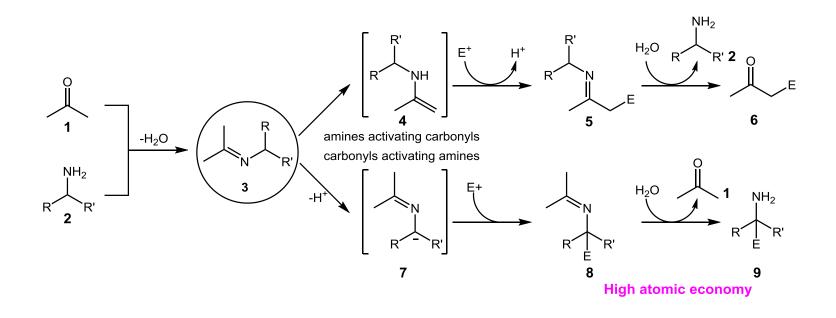
Background:

- **1992-1996** B.S. in Wuhan University;
- □ 1999-2002 M.S. in Nanjing University;
- **2002-2006** Ph.D. in SIOC, CAS;
- **2006-2011** Postdoctoral, Colorado State University;
- **2011-Now** Professor, Shanghai Normal University

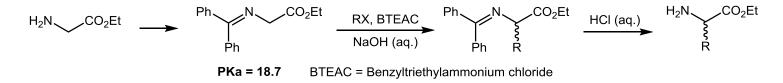
Baoguo Zhao

Research:

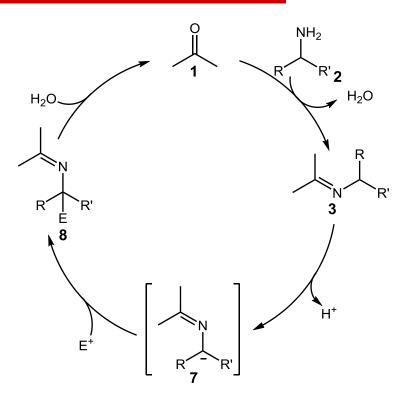
- Biomimetic Asymmetric Catalysis;
- Biomimetic Total Synthesis


1 Introduction

2 Catalytic asymmetric direct α -alkylation of amino esters

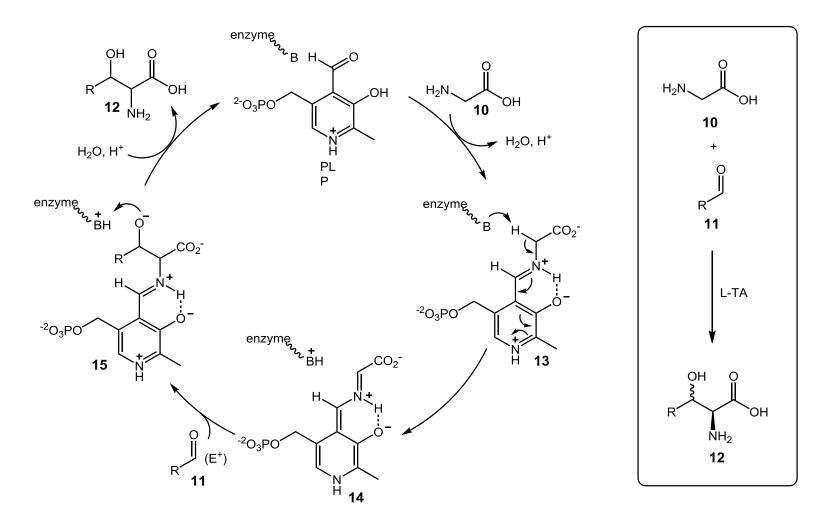

3 Carbonyl catalysis enables an asymmetric Mannich reaction

Introduction

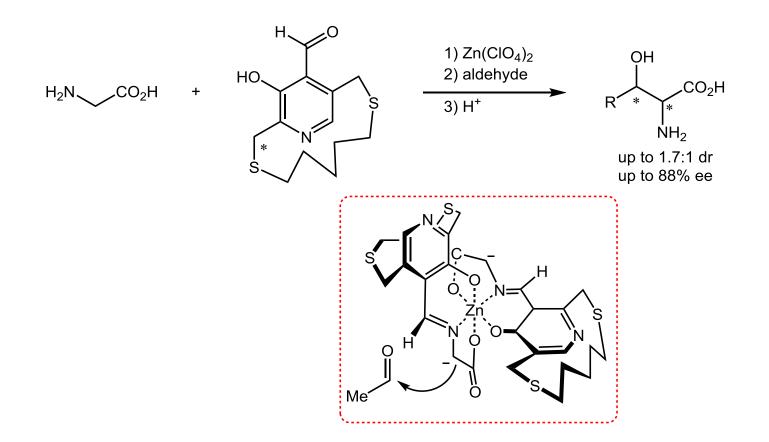


The first synthesis of racemic α -amino acids

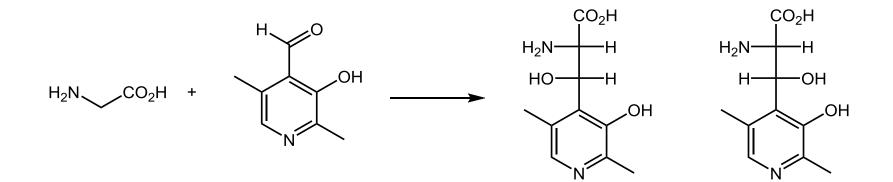
O'Donnell, M. J. *et al. Tetrahedron Lett.***1978**, *47*, 4625. O'Donnell, M. J. *Acc. Chem. Res.* **2004**, *37*, 506. List, B. *et al. Chem. Rev.* **2007**, *107*, 5413.


Carbonyl Catalysis

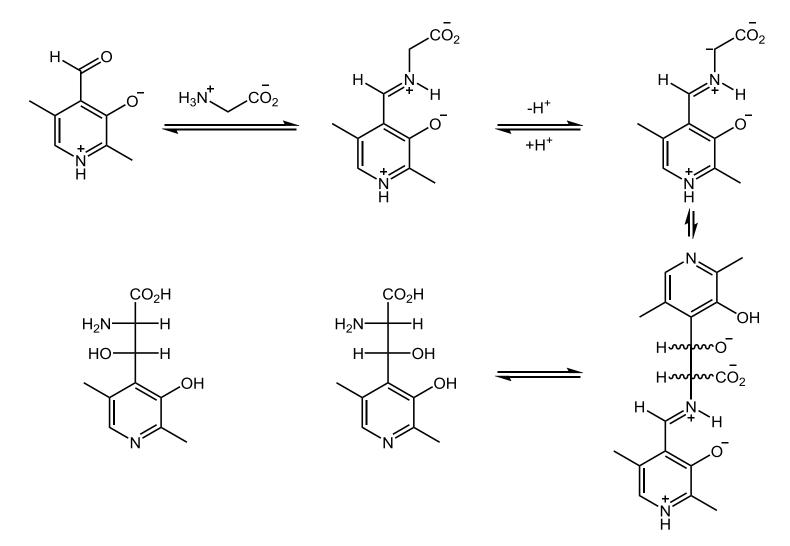
An ideal reaction should meet the following requirements:


- a) Carbonyl catalyst **1** must be electron-withdrawing enough to promote deprotonation to form α -amino anion **7** for further reaction with an electrophile;
- b) Both the carbonyl catalyst **1** and the imine intermediate **3** should be much less reactive than the electrophile in competition for the active α -amino anion **7** under the reaction conditions;
- c) For an asymmetric version, carbonyl catalyst **1** should control positioning of the incoming electrophile.

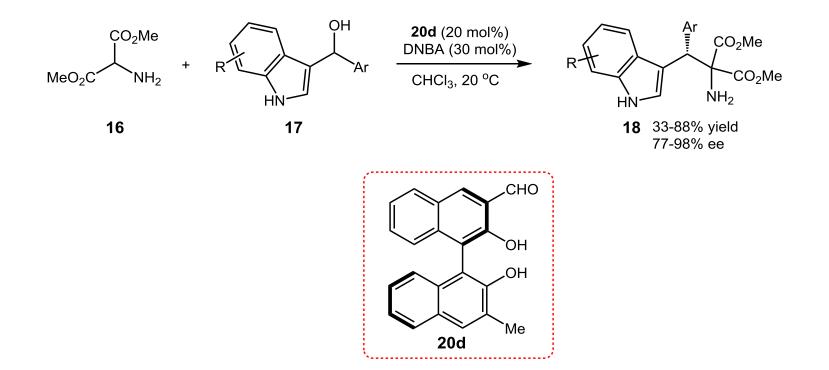
Carbonyl Catalysis in Biological Systems


Kimura, T. *et al. J. Am. Chem. Soc.* **1997**, *119*, 11734. Vivoli, M. *et al. FEBS J.* **2014**, *281*, 129.

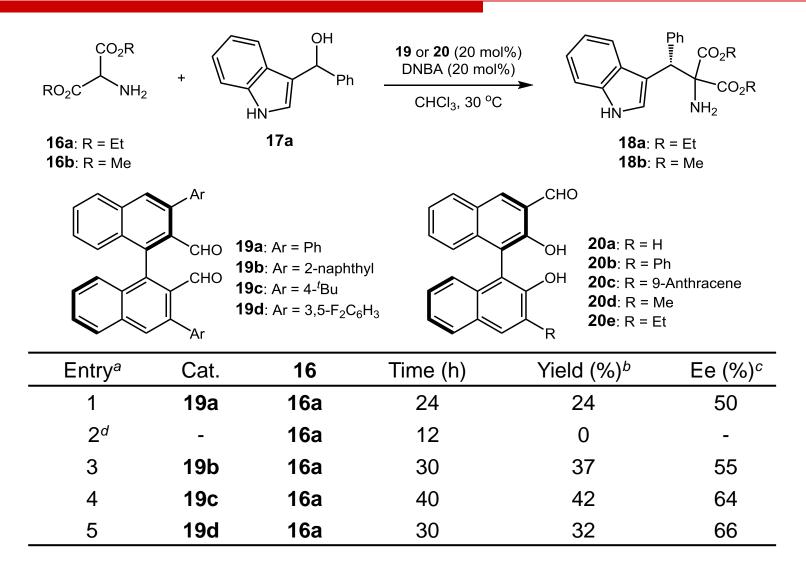
Studies on Imitating the Biological Process


Kuzuhara, H. et al. J. Chem. Soc. Chem. Commun. 1987, 2, 95.

Claisen-Type Addition of Glycine to Pyridoxal


Richard, J. P. G. et al. J. Am. Chem. Soc. 2004, 126, 10538.

Claisen-Type Addition of Glycine to Pyridoxal


Richard, J. P. G. et al. J. Am. Chem. Soc. 2004, 126, 10538.

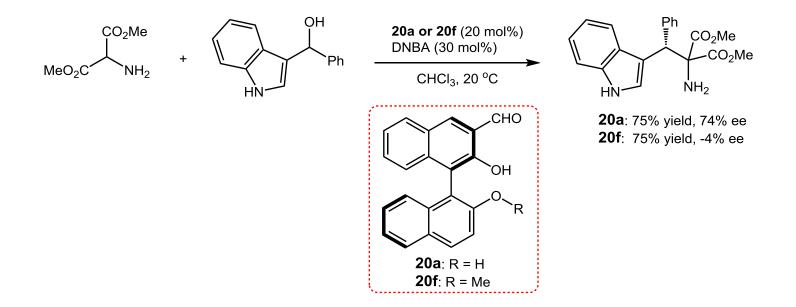
Chiral Aldehyde Catalyzed *a*-Alkylation Reaction

Guo, Q,-X. et al. Chem. Sci. 2014, 5, 1988.

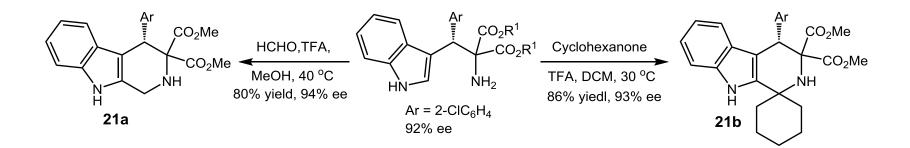
Optimization of Reaction Conditions

Optimization of Reaction Conditions

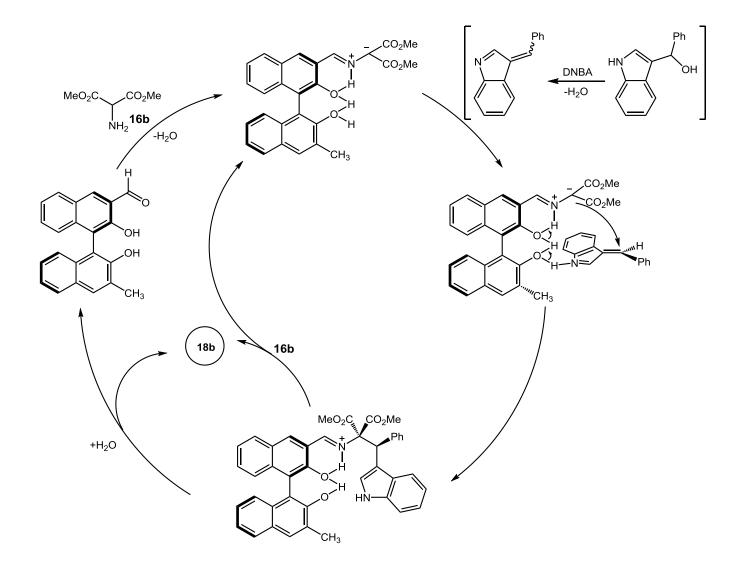
Entry	Cat.	16	Time (h)	Yield (%) ^b	Ee (%) ^c
6	20a	16a	4	66	71
7	20b	16a	6	57	81
8	20c	16a	5	61	77
9	20b	16b	4	57	82
10	20b	16b	4	65	84 ^e
11	20e	16b	6	60	84 ^e
12	20d	16b	6	77	86 ^e
13	20d	16b	6	72	87 ^{e,f}
14	20d	16b	9	68	86 ^{e,g}
15	20d	16b	12	55	85 ^{e,h}

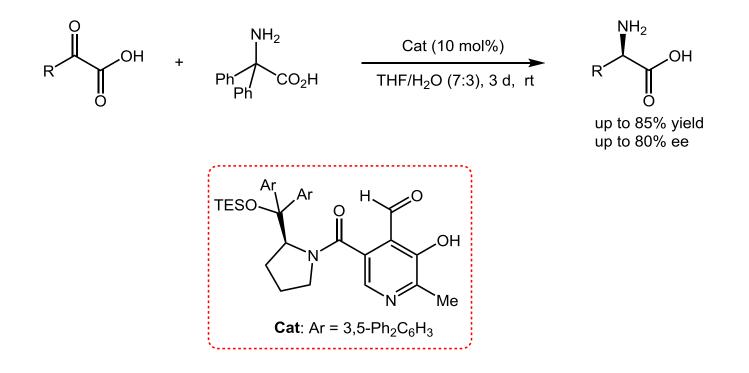

^a Entries 1-4: **16** (0.2 mmol), **17a** (0.1 mmol), **19** or **20** (0.02 mmol), CHCl₃ (1 mL), 30 °C; 5–15: **16** (0.4 mmol), **17a** (0.2 mmol), **19** or **20** (0.04 mmol), CHCl₃ (2 mL), 30 °C. ^b Isolated yield. ^c Determined by HPLC. ^d No catalyst added. ^e At 20 °C. ^f Using 50 mol% DNBA. ^g Using 15 mol% **20d**. ^h Using 10 mol% **20d**.

MeO ₂ C	₂ Me `NH ₂ +	HN HN 17	DNBA	0 mol%) (30 mol%) , 20 °C ►	Ar CO HN 18	D₂Me ℃O₂Me ₂
Entry ^a	18	Ar	R	Time (h)	Yield (%) ^b	Ee (%) ^c
1	18b	Ph	Н	6	77	86
2	18c	$2-CIC_6H_4$	Н	48	68	92
3	18d	$2-BrC_6H_4$	Н	24	64	96
4	18e	$2-FC_6H_4$	Н	24	62	91
5	18f	$2-O_2NC_6H_4$	Н	120	49	95
6	18g	$2-MeOC_6H_4$	Н	7	59	82
7	18h	$3-FC_6H_4$	Н	5	88	87
8	18i	$3-\text{MeC}_6\text{H}_4$	Н	18	42	84
9	18j	$3-MeOC_6H_4$	Н	6	77	87
10	18k	$4-\text{MeC}_6\text{H}_4$	Н	7	53	77

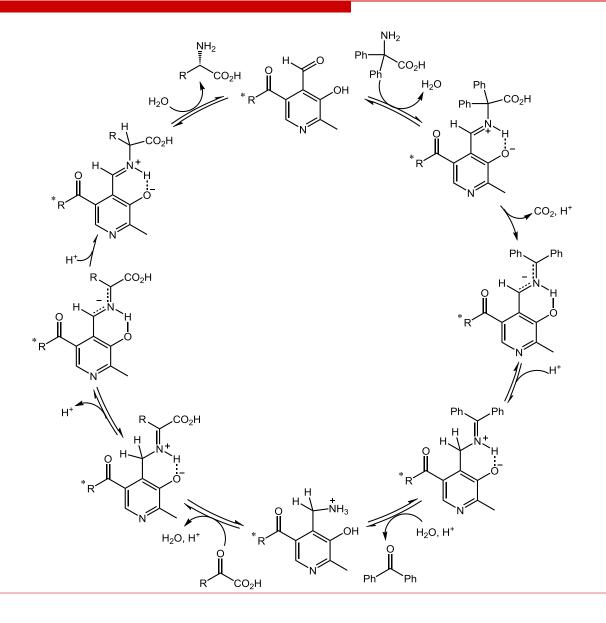

Entry	18	Ar	R	Time (h)	Yield (%) ^b	Ee (%) ^c
11	181	$4-BrC_6H_4$	Н	13	76	87
12	18m	$4-CF_3C_6H_4$	Н	24	76	88
13	18n	1-Naphthyl	Н	20	67	89
14	180	2-Naphthyl	Н	6	88	80
15	18p	1-Naphthyl	5-Br	10	86	82
16	18q	1-Naphthyl	5-CI	10	84	79
17	18r	1-Naphthyl	6-F	21	49	94
18	18s	1-Naphthyl	7-Me	21	33	92
19	18t	1-Naphthyl	7-Me	41	43	98 ^d
20	18u	1-Naphthyl	7-Me	15	67	95 ^d

^a **1** (0.4 mmol), **2** (0.2 mmol), **5d** (0.04 mmol), DNBA (0.06 mmol), CHCl₃ (2 mL), 20 °C. ^b Isolated yield. ^C Determined by HPLC. ^d At 40 °C.

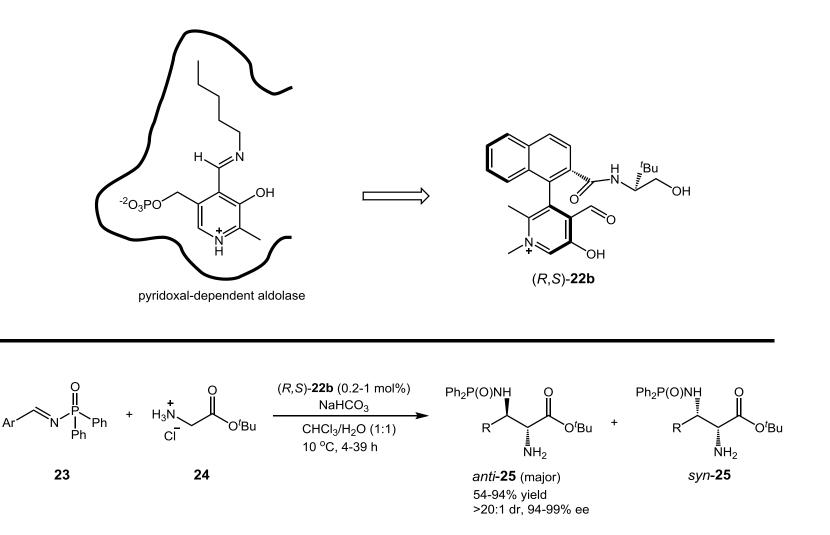

Control Experiment


Product Conversion

Proposed Catalytic Cycle



Chiral Pyridoxal-catalyzed Transamination

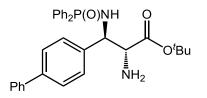


Zhao, B. et al. Org. Lett. 2015, 17, 5784.

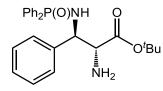
Proposed Mechanism

Asymmetric Mannich Reaction

Zhao, B. et al. Science 2018, 360, 1438.

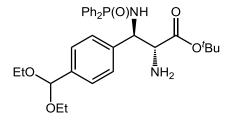

Optimization of Reaction Conditions

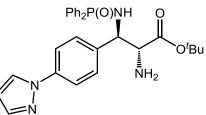
4-PhC ₆ H ₄	O II N [−] P Ph + H ₃ N Ph CI 24a: R 24a: R 24a: R 24a: R 24a: R	= ^t Bu = Et	(<i>R</i> , <i>S</i>)- 22 (1 mol%) NaHCO ₃ HCl ₃ /H₂O, 10 °C, 9 h	$Ph_2P(O)NH$ O $4-PhC_6H_4$ O ^t Bh NH_2 <i>anti-</i> 25a (major)	0 7	H O O ^t Bu NH ₂
	-		H O O MOM	OH (R,S)-22a, (R,S)-22b, (S,S)-22c, (S,R)-22d, (R,S)-22e, (R,S)-22f,	R = ^t Bu R = ^t Bu, R = Ph R = Bn,	
Entry ^a	Cat.	24	CHCl ₃ /H ₂ O	Yield (%) ^b	dr ^c	Ee (%) ^d
1	(<i>R</i> , <i>S</i>)- 22a	24a	1:1	79	18:1	95
2	(<i>R</i> , <i>S</i>)- 22b	24a	1:1	90	>20:1	99
3	(S,S)- 22c	24a	1:1	41	5:1	16
4	(<i>S</i> , <i>R</i>)- 22d	24a	1:1	84	>20:1	-97
5	(<i>R</i> , <i>S</i>)- 22e	24a	1:1	73	>20:1	94
6	(<i>R</i> , <i>S</i>)- 22f	24b	1:1	76	>20:1	95

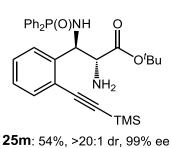

Optimization of Reaction Conditions

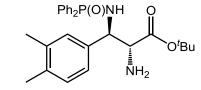
$4-PhC_{6}H_{4} \longrightarrow P_{Ph} + H_{3}N \longrightarrow C_{I} \longrightarrow O_{CI} + H_{3}N \longrightarrow O_{CI} + H_$								
Entry ^a	Cat.	24	CHCl ₃ /H ₂ O	Yield (%) ^b	dr ^c	Ee (%) ^d		
7	none	24a	1:1	0	-	-		
8	(<i>R</i> , <i>S</i>)- 22b	24a	3:7	82	>20:1	98		
9	(<i>R</i> , <i>S</i>)- 22b	24a	7:3	76	>20:1	98		
10	(<i>R</i> , <i>S</i>)- 22b	24a	9:1	74	>20:1	97		
11	(<i>R</i> , <i>S</i>)- 22b	24a	10:0	47	>20:1	97		
12	(<i>R</i> , <i>S</i>)- 22b	24b	1:1	65	>20:1	99		
13	(<i>R</i> , <i>S</i>)- 22b	24c	1:1	64	>20:1	99		


^a All reactions were carried out with **23a** (0.10 mmol), **24** (0.15 mmol), **22** (0.0010 mmol), and NaHCO₃ (0.25 mmol) in solvent (0.30 mL) at 10 °C unless otherwise stated. For entry 2, the reaction was carried out in double scale. ^b Isolated yield based on imine **23a**. ^c The dr (*anti/syn*) values were determined by ¹H NMR analysis of the crude reaction mixtures after the reaction was quenched by treatment with hydroxylamine hydrochloride (1.0 equiv). ^d The ee values were determined by HPLC analysis after the product **25a** was converted to the corresponding *N*-benzoy derivative.

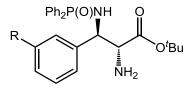

25a: (1 mol%): 90%, >20:1 dr, 99% ee **25a:** (0.1 mol%): 89%, >20:1 dr, 99% ee


25b: 93%, >20:1 dr, 98% ee

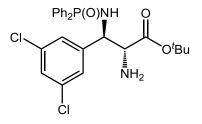

25c: (R = Me): 83%, >20:1 dr, 99% ee **25d**: (R = MeO): 62%, >20:1 dr, 99% ee **25e**: (R = F): 84%, >20:1 dr, 96% ee **25f**: (R = CN): 76%, >20:1 dr, 95% ee

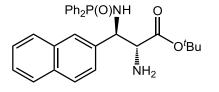


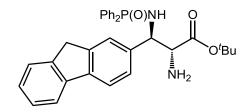
25g: 77%, >20:1 dr, 98% ee



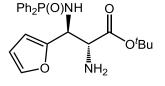
25h: 92%, >20:1 dr, 95% ee




25n: 87%, >20:1 dr, 99% ee

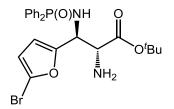


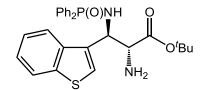
25i: (R = Me): 78%, >20:1 dr, 99% ee **25j**: (R = MeO): 92%, >20:1 dr, 99% ee **25k**: (R = Cl): 76%, >20:1 dr, 96% ee **25l**: (R = CF₃): 78%, >20:1 dr, 95% ee

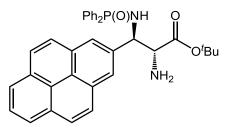

250: 82%, >20:1 dr, 94% ee

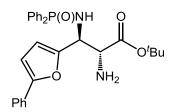


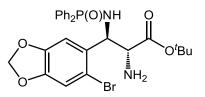
25p: 66%, >20:1 dr, 99%ee

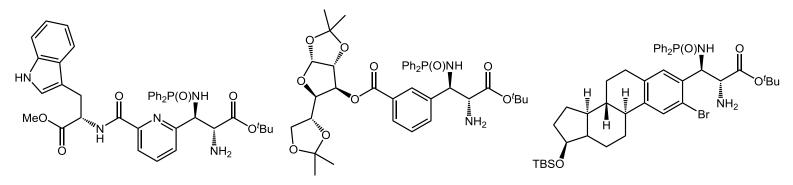

25q: 74%, >20:1 dr, 99%ee


25s: 92%, >20:1 dr, 99%ee

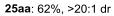

25v: 74%, >20:1 dr, 99%ee

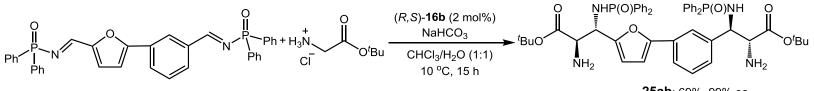

25t: 91%, >20:1 dr, 98%ee


25w: 67%, >20:1 dr, 98%ee

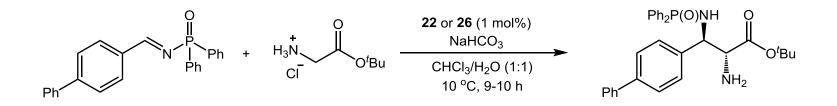

25r: 77%, >20:1 dr, 98%ee

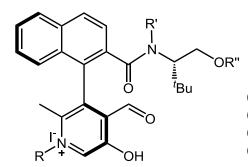
25u: 94%, >20:1 dr, 98%ee



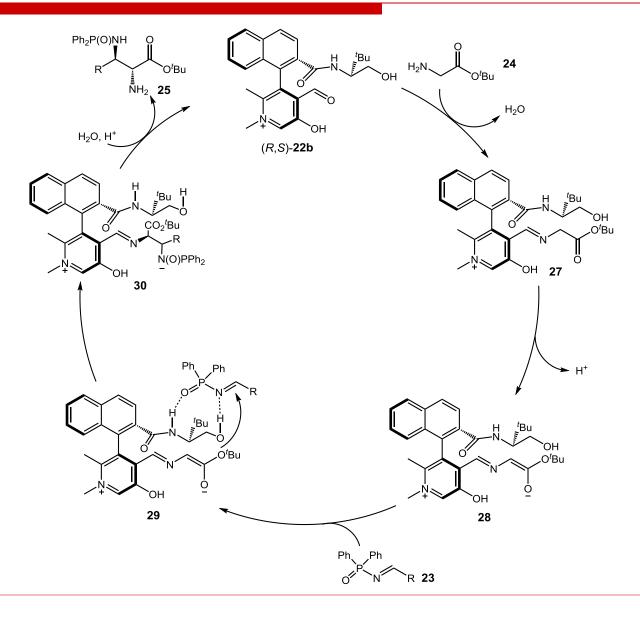

25x: 84%, >20:1 dr, 99%ee

25y: 83%, 17:1 dr


25z: 78%, >20:1 dr



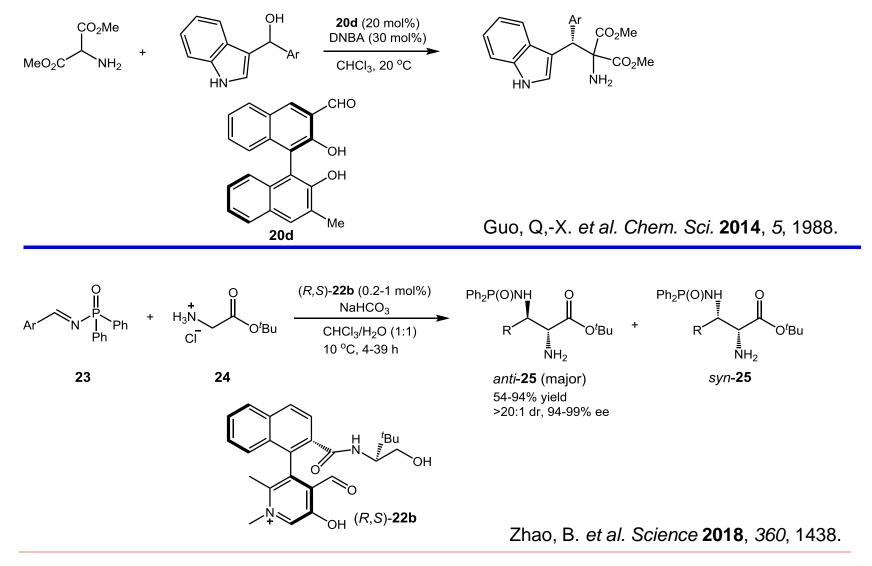
25ab: 69%, 99% ee


Control Experiments



(R,S)-**22b**, (R = Me, R' = H, R" = H): 90%, >20:1 dr, 99% ee (R,S)-**22b**, (R = Me, R' = H, R" = Me): 27%, 12:1 dr, -31% ee (R,S)-**22b**, (R = Me, R' = Me, R" = H): 9%, 1:1 dr, -87% ee (R,S)-**26**, (R = none, R' = H, R" = H): 0%

Proposed Mechanism

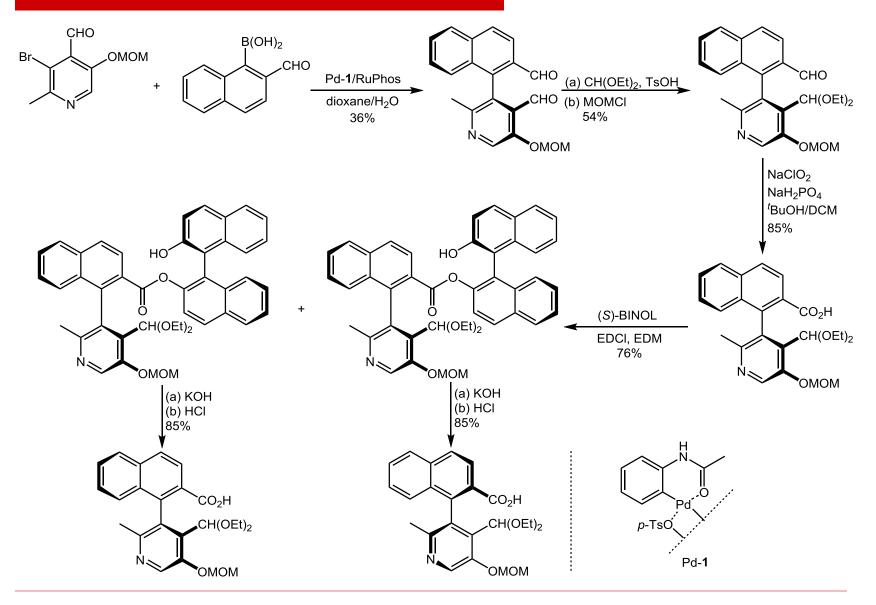


Chiral Aldehyde Catalysis

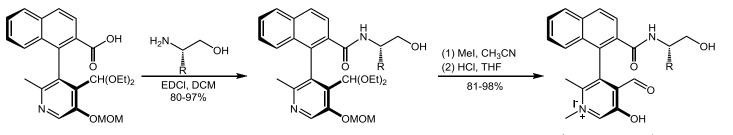
Guo, Q,-X. et al. J. Am. Chem. Soc. 2018, 140, 9774.

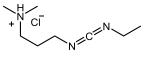
Summary

Enamine catalysis is a powerful activation mode in organocatalysis. The process involves conversion of carbnyl compound into enamine through imine intermediate 3 (an iminium intermediate if a secondary amine is applied) and is catalyzed by amine 2. Nucleophilic addition of the activated enamine to an electrophile can proceed to yield substituted carbonyl 6. On the other hand, the formation of imine **3** also increases the α -H acidity of amine 2 to facilitate formation of the α -amino carbanion 7, which can also react with an electrophile to produce 8. If the product 8 can be hydrolyzed under the reaction conditions to regenerate **1**, it would be possible to use the carbonyl compound **1** as a catalyst to promote α -functionalization of amine **2**.


The Last Paragraph

The side chain of catalysts influences activity and selectivity. To explain the side-chain effect as well as the origin of chirality, we propose the orientation for the addition of carbanion to imine. As glycinate is deprotonated to yield the delocalized carbanion, imine is also activated by the side chain through hydrogen bonds with the N–H and O–H moieties. We thus propose that the catalyst not only activates both of the substrates but, similar to an enzyme, also orients the addition by bringing the two reactants together with a specific spatial arrangement. This cooperative bifunctional activation mode leads to product with excellent selectivities. The proposed transition state is further supported by control experiments. Methylation of the N–H or O–H group of the side chain led to decreases in activity and in diastereo and enantioselectivities, likely because the methylation weakens or eliminates the hydrogen bond with the imine.


Acknowledgement


Synthesis of Catalysts

Synthesis of Catalysts

(R,S)-16a, R = ^{*i*}Pr, (S,S)-16c, R = ^{*t*}Bu, (R,S)-16e, R = Bn (R,S)-16b, R = ^{*t*}Bu, (R,S)-16d, R = Ph, (R,S)-16f, R = Cy

EDCI

Zhao, B. et al. Science 2018, 360, 1438.