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Ligand-Controlled C(sp3)-H Arylation and Olefination in Synthesis of
Unnatural Chiral α-Amino Acids

Method for synthesizing chiral Ar Ar' amino acids
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Palladium-Catalyzed Arylation of Primary C(sp3)-H Bonds
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Removal of Amide Auxiliary

9



Palladium-Catalyzed Arylation of Secondary C(sp3)-H Bonds
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Further Applications of Pd Catalysis with L10
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Unnatural α-Amino Acid Elaboration

a) 5 mol% Grubbs Catalyst 2nd Generation, DCM, 50 oC, 16-19 h;
b) Pd/C, H2, rt, EtOAc,  40 min-24 h.
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Synthesis and Crystallography of Primary and Secondary C(sp3)-H
Activation Intermediates
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Catalytic Reaction of Intermediates in C(sp3)-H Arylation Reactions
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Ligand-Enabled Methylene C(sp3)−H Bond Activation with a PdII Catalyst

Yu, J.-Q. et al. J. Am. Chem. Soc. 2012, 134, 18570-18572.



Ligand-Enabled Triple C-H Activation Reactions: One-Pot Synthesis of 
Diverse 4-Aryl -2-quinolinones from Propionamides
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Proposed Catalytic Pathway
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Ligand-Enabled γ-C-H Olefination and Carbonylation: Construction of β-
Quaternary Carbon Centers

Yu, J.-Q. et al. J. Am. Chem. Soc. 2014, 136, 5267–5270.



Ligand-Enabled Cross-Coupling of C(sp3)–H bonds with Arylboron 
Reagents via Pd(II)/Pd(0) Catalysis
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C-H Activation of Aliphatic Amines Directed by Strong δ Chelation



Palladium(0)-Catalyzed Intermolecular Arylation/Alkynylation of 
C(sp3)−H Bonds

Yu, J.-Q. et al. J. Am. Chem. Soc. 2009, 131, 9886–9887.
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PdII-Catalyzed Enantioselective Activation of C(sp2)-H and C(sp3)-H
Bonds Using Monoprotected Amino Acids as Chiral Ligands

Yu, J.-Q. et al. Angew.Chem.Int. Ed. 2008, 47, 4882-4886.



PdII-Catalyzed Enantioselective C-H Activation of Cyclopropanes

Yu, J.-Q. et al. J. Am. Chem. Soc. 2011, 133, 1959-19601.



PalladiumII-Catalyzed Enantioselective C(sp3)−H Activation Using a 
Chiral Hydroxamic Acid Ligand
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Pd-Catalyzed Asymmetric Iodination of Unactivated C-H Bonds under 
Mild Conditions
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Pd-Catalyzed Stereoselective Oxidation of Methyl Groups by Inexpensive 
Oxidants under Mild Conditions
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Summary

Ligand-Controlled C(sp3)-H

Auxiliary-Controlled C(sp3)-H



Over the past decade, substantial progress has been achieved in the
palladium catalyzed activation of the inert β-C(sp3)–H bonds of aliphatic
carboxylic acid derivatives using chiral oxazolines the 8 aminoquinolinecarboxylic acid derivatives using chiral oxazolines, the 8-aminoquinoline
auxiliary, and a variety of weakly coordinating amide directing groups. In
particular, the synthesis of unnatural amino acids via the direct β
functionalization of α–amino acids has been an area of extensive researchfunctionalization of α–amino acids has been an area of extensive research
since a seminal report by Reddy et al. We envisioned that a sequential
diarylation of alanine with two different aryl iodides could potentially provide
an efficient route for the preparation of β-Ar-β-Ar′-α–amino acids containing aan efficient route for the preparation of β Ar β Ar α amino acids containing a
β-chiral center. Although the more strongly coordinating 8-aminoquinoline
auxiliary developed by Zaitsev et al. is a powerful directing group for the β-
arylation of alanine, this auxiliary provides predominantly β,β-homo-y , y p p y β,β
diarylated products, which prevents the sequential installation of two different
aryl groups. It is possible to use a specifically designed 2-methylthioaniline
auxiliary to achieve monoarylation of alanine in moderate yield and then usey y y
a different auxiliary to perform the secondary C(sp3)–H arylation with a
distinct aryl iodide. However, this hypothetical route has not yet been used



for preparing β-Ar−β-Ar′-α–amino acids because the removal and installation
of the second auxiliary would add three synthetic steps to the sequence. In
addition, the basic reaction conditions used in the first arylation step partiallyaddition, the basic reaction conditions used in the first arylation step partially
racemize the amino acid to 90% enantiomeric excess. .



Herein, we report the discovery that a pyridine-based ligand promotes
monoarylation of primary β-C(sp3)–H bonds exclusively and that amonoarylation of primary β C(sp ) H bonds exclusively and that a
second, quinoline-based ligand enables introduction of a distinct aryl
group via subsequent secondary β-C(sp3)–H activation in one pot. The
reactions proceed with excellent levels of diastereoselectivity withp y
respect to the starting configuration at the α carbon. As such, both
configurations at the new β-stereogenic center can be constructed by
simply choosing the order of aryl group installation. We further
demonstrate that the use of the quinoline-based ligand enables the
C(sp3)–H olefination of an alanine derived substrate to afford olefin-
substituted chiral α–amino acids. .


