Remote *Meta*-Selective C–H Functionalization of Arenes

Reporter: Cong Liu Checker: Mu-Wang Chen Date: 2015/10/27

Motomu Kanai *et al*, *Nature Chem.* **2015**, *7*, 712. Motomu Kanai University of Tokyo

Regioselective C-H Functionalizations of Arenes

Friedel-Crafts Reaction:

Friedel, C.; Crafts, J. M. C. R. Hebd. Seances Acad. Sci. 1877, 84, 1392.

Minisci Reaction:

$$\begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 tBuCO_2H, AgNO_3 \\
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 tBuCO_2H, AgNO_3 \\
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 tBuCO_2H, AgNO_3 \\
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 \end{array} \begin{array}{c}
 tBuCO_2H, AgNO_3 \\
 tBuCO_2H, AgNO_3 \\
 \end{array} \begin{array}{c}
 tBuCO_2H, AgNO_3 \\
 \end{array} \begin{array}{c}
 tBuCO_2H, AgNO_3 \\
 \end{array} \end{array}$$

Minisci, F. et al, Tetrahedron 1971, 27, 3575.

DOI: 10.1002/anie.201206568

Directed Functionalization of C–H Bonds: Now also *meta* Selective

Thanh Truong and Olafs Daugulis*

meta-Directing Groups

Steric-Sensitive Borylation and Silylation

Science 2002, 295, 305; Angew. Chem. Int. Ed. 2002, 41, 3056; Science 2014, 343, 853.

Diaryliodonium Salt-Mediated Arylation

Science 2009, 323, 1593; Angew. Chem. Int. Ed. 2011, 50, 463; J. Am. Chem. Soc. 2011, 133, 7668; Chin. J. Chem. Phys. 2011, 24, 711.

Meta C-H Fuctionalizations with End-on Templates

Cyclophane-like pretransition state: ≥ 12 -membered ring

Nature 2012, 486, 518; J. Am. Chem. Soc. 2014, 136, 344; J. Am. Chem. Soc. 2014, 136, 894.

The Use of U Shaped Templates

J. Am. Chem. Soc. **2013**, 135, 7567; J. Am. Chem. Soc. **2013**, 135, 18778; J. Am. Chem. Soc. **2014**, 136, 10807; Nature **2014**, 507, 215; Org. Lett. **2014**, 16, 5760; Angew. Chem. Int. Ed. **2015**, 54, 8515; Chem. Sci. **2015**, 6, 5595; ACS Cent. Sci. **2015**, asap. (10.1021/acscentsci.5b00312)

Norbornene-Mediated Meta C-H Functionalization

Wilhelm, T.; Lautens, M. Org. Lett. 2005, 7, 4053.

Meta-Selective C-H Acylation via Pd/NBE Catalysis

Angew. Chem. Int. Ed. 2015, 54, 12664; Angew. Chem. Int. Ed. 2015, 54, 12669.

Meta-Selective C-H Activation via Pd/NBE Catalysis

Nature 2015, 519, 334; J. Am. Chem. Soc. 2015, 137, 5887; J. Am. Chem. Soc. 2015, 137, 11574.

Ortho-Metalation-Triggered S_EAr Reaction

Roper, W. R. et al, Inorg. Chim. Acta. 1994, 220, 261; J. Am. Chem. Soc. 2011, 133, 19298.

Ortho-Metalation-Triggered S_EAr Reaction

Others

➢ Use of a traceless directing group.

J. Am. Chem. Soc. 2014, 136, 4109; Science 2014, 346, 834.

Catalyst Design

Kanai, M. et al, Nature Chem. 2015, 7, 712.

Optimization

	R L1 : R =	= <i>t</i> Bu = OMe	L3		N H
			Yield ^{a,b}		
Entry	Ligand	mono: <mark>3a + 4a</mark> (<mark>3a/4a</mark>)	di: 5a	Recovery of 1a	
1	L1	67% (1.9)	3%	30%	H ^N
2	L2	52% (1.4)	4%	44%	15: X = O
3	L3	0	0	99%	L6 : X = S
4	L4	47% (2.0)	3%	50%	
5	L5	50% (8.3)	3%	47%	Linker J
6	L6	0	0	99%	

Ö

Ir

й Х R"

^a **2a** (0.75 equiv). ^b *p*-Xylene was used as a solvent.

Optimization

			Yield ^{a,b}		
Entry	Ligand	mono: 3a + 4a (3a/4a)	di: 5a	Recovery of 1a	
1	L5	44% (27)	10%	45%	
2^{c}	L5	50% (8.3)	3%	47%	
3	L7	31% (7.4)	0%	69%	
4	L8	22% (1.4)	1%	77%	L5 : R = Cv
5	L9	31% (7.2)	1%	66%	L7 : $R = Hex$ L8 : $R = 4-(MeO)-C_{0}H$
6	L10	40% (3.9)	4%	56%	L9 : R = $4 - CF_3 - C_6H_4$
7	L11	32% (3.6)	0%	68%	L10: R = 4-(//Bu)-C ₆ H L11: R = 2,6-2Me-C ₆ H
8 ^{c,d}	L5	51% (17)	22%	27%	
		48% (19) ^e	17% ^e		

^a **2a** (0.75 equiv). ^b Hexane was used as a solvent. ^c *p*-Xylene was used as a solvent. ^d $[lr(OMe)(cod)]_2$ (1.5 mol%), **L5** (3.0 mol%), **2a** (1.0 equiv). ^e Isolated yield.

$\frac{m}{pinB} \xrightarrow{II}_{P} R^{N(hex)_2}$				pinB U N(hex	<) ₂
	Yie	eld ^a		R	
	L5	L1			
R = OMe	59% (7.8)	40% (0.46)		Yie	eld ^a
R = Me	35% (12)	39% (0.72)		L5	L1
R = Br	96% (7.5)	97% (0.46)	$\mathbf{R} = \mathbf{F}$	>99% (9.1)	>99% (1
R = Cl	>99% (13)	>99% (0.61)	R = Br	85%	>99%
$R = CF_3$	>99% (>30)	>99% (0.86)	R - Ph	>99%	>99%
$R = OCF_3$	>99% (6.9)	>99% (0.25)	R = T II R = C N	92% (20)	75% (1
$R = CO_2Me$	>99% (>30)	>99% (2.1)		7270 (20)	7370 (12
$\mathbf{R} = \mathbf{P}\mathbf{h}$	26% (>30)	32% (3.9)			

^a ¹H NMR yield of mono-borylated products (as a mixture of *meta*-and *para*-products) with the *meta/para* ratio described in parentheses.

^a ¹H NMR yield of mono-borylated products (as a mixture of *meta*-and *para*-products) with the *meta/para* ratio described in parentheses.

^a ¹H NMR yield of mono-borylated products (as a mixture of *meta*-and *para*-products) with the *meta/para* ratio described in parentheses. ^b L9 was used as a ligand

pinB R R						
	Yie	eld ^a				
	L5	L1				
$R = NEt_2$	46% (>30)	61% (1.3)				
R = OEt	44% (>30)	99% (0.55)				
$\mathbf{R} = \mathbf{C}\mathbf{y}$	44% (>30)	53% (1.9)				
	pinB R Cy					
	Yie	Yield ^a				
	L5	L1				
R = OMe	>99% (>30)	86% (0.42)				

>99% (>30)

>99% (0.14)

R = Cl

	Yield ^a			
	L5	L1		
R = OMe	82% (0.52)	>99% (0.28)		
R = Me	85% (7.5)	>99% (0.59)		
R = Br	99% (13)	>99% (0.32)		
$R = CF_3$	44% (>30)	99% (0.55)		

^{a 1}H NMR yield of mono-borylated products (as a mixture of *meta*-and *para*-products) with the *meta/para* ratio described in parentheses.

Mechanistic Study

> ¹H NMR chemical shift changes caused by interaction between ligand and amide.

Entry	L5/1a	H ^a (ppm)	H ^b	Hc	_	Entry	L5-Me ₁ /1a	Hd	He
			(ppm)	(ppm)	_			(ppm)	(ppm)
1	1/0	5.65	3.60	3.63		1	1/0	6.26	3.91
2	1/1	5.78	3.74	3.65		2	1/1	6.26	3.91
3	1/64	7.00-7.50	5.88	3.89		3	1/64	6.37	3.92

¹H NMR spectra were measured using benzene- d_6 .

Mechanistic Study

Summary and Perspective

Remote σ -activation: Ru

Transient mediator: Pd

Secondary hydrogen-bond interaction: Ir

Hetarene-based
 directing group
 Excellent selectivity

Step-economicalExcellent selectivity

Regioselective transformations are important for efficient syntheses. Regioselectivity can be achieved by introducing activated functional groups such as halogens and triflates, but by passing this step would be attractive. For this reason, C–H transformations have recently received increasing attention as efficient and ideal alternative reactions. C-H transformations require fewer reaction steps to attain the target molecule and generate less waste than conventional methods involving preactivation processes. However, it is usually difficult to realize regioselective C–H transformations except with special substrates bearing only one possible reaction site and/or a directing group. In the case of C(sp²)-H transformations of aromatic rings, the use of directing groups generally produces only orthoselective reactions. The development of *meta*-selective transformations is very difficult, but synthetically useful. Several pioneering examples of *meta*selective transformations have been reported recently.

In summary, we have successfully developed a regioselective aromatic C-H borylation using a designed iridium catalyst comprising a bipyridine moiety, with a pendant hydrogen-bond donor. This is the first reported catalyst-controlled regioselective C–H borylation of aromatic compounds. The important aspect of this reaction is that hydrogen bonding between the substrates and the catalyst controls the regioselectivity of a C-H bond transformation. The present catalytic system has the following merits: (1) it has a wide substrate scope; (2) common functional groups are used for catalyst direction; and (3) the ligands are easily accessed. We believe that the present concept will give a general solution for controlling the regioselectivity of C–H bond transformations and other reactions, without the need for directing groups.