Literature Report

Total synthesis of malagashanine: a chloroquine potentiating indole alkaloid with unusual stereochemistry

Reporter: Hong-Qiang Shen Checker: Cong Liu Date: 2016/11/01

Blakey, S. B. et al. Chem. Sci. 2016, 7, DOI:10.1039/c6sc03578g

Contents

Introduction

Blakey's Method for Synthesis of Malagashanine

Tang's Method for Synthesis of 11-Demethoxymyrtoidine

Summary

CV of Simon B. Blakey

Position: Associate Professor

in Emory University

Education:

- **1997** B. Sc., University of Auckland (NZ)
- 2002 Ph. D., Chemistry, University of Cambridge (UK)
- 2005 Postdoctoral fellow, California Institute of Technology

Malagasy Alkaloids

Malagashanine

Malagashanine

Strychnos myrtoides 马钱子

- Isolated from Strychnos mystoides in the early 1990s
- Promising anti-malaria activity
- Seven stereocenters, complex fused rings in pentacyclic framework

Proposed Retrosynthesis

Blakey, S. B. et al. Chem. Sci. 2016, 7, ASAP.

Cascade Annulation

Blakey's Method

Pinnick Oxidation

Blakey's Method

Blakey's Method

Schwartz Reagent

Schwartz, J. et al. J. Am. Chem. Soc. 1974, 96, 8115.

Synthesis of Key Intermediate 25

Synthesis of Malagashanine

11-Demethoxymyrtoidine

11-Demethoxymyrtoidine

Strychnos myrtoides 马钱子

- Isolated from Strychnos mostueoides in 1999
- Promising anti-malaria activity
- Five stereocenters, complex fused rings in hexacyclic framework

Tang, Y. et al. Angew. Chem. Int. Ed. 2016, 55, 9224.

Formal [2+2+2] Strategy

Tang, Y. et al. Angew. Chem. Int. Ed. 2016, 55, 9224.

Reaction Optimization

Entry	LA	t	31 (yield %)	32 (yield %)	d.r.
1	CuBr ₂	1 h	0	97	
2	$Cu(SbF_6)_2$	23 h	0	72	
3	FeCl ₃	40 min	73	trace	> 95:5
4	All ₃	25 min	0	> 99	
5	InF_3	17 h	trace	0	nd
6	InCl ₃	6 h	91	0	95:5
7	InBr ₃	20 min	85	0	> 95:5
8	Inl ₃	15 min	85	0	> 95:5

Reaction Scope

Tang's Method

CO₂Me

35

ĊO₂Me

36

Tang's Method

Tang's Method

11-Demethoxy-16-epi-myrtoidine

Summary

Blakey, S. B. et al. Chem. Sci. 2016, 7, ASAP.

Tang, Y. et al. Angew. Chem. Int. Ed. 2016, 55, 9224.

The First Paragraph

Malagashanine is a structurally unusual alkaloid that was isolated from the stem bark of the Madagascan shrub Strychnos myrtoides in the early 1990s. It was isolated during an ethnobotanical study investigating local approaches to malaria treatment, and was found to potentiate chloroquine against otherwise resistant Plasmodium falciparum. To date, the mechanism of action for this observed activity has not been established, although it was noted that malagashanine impacts chloroquine accumulation in the food vacuole of the malaria parasite.

The First Paragraph

Although initially incorrectly assigned, the structure of malagashanine was unambiguously determined by X-ray crystallography. The pentacyclic alkaloid contains seven consecutive stereocenters, and most strikingly, a *trans*-ring fusion between the C and D rings. To the best of our knowledge, this represents the first report of a *trans*-ring fusion in a Strychnos alkaloid and as a result, this core structure had not been the focus of any synthetic studies.

In summary, we report a stereoselective synthesis of the chloroquine potentiating natural product malagashanine. A novel cascade annulation protocol efficiently constructs the C and D rings and installs four of the five consecutive D-ring stereocenters, including the critical *trans*-CD ring fusion. This represents the first total synthesis of a member of the Malagasy alkaloid family of natural products and provides a foundation for an exploration of the interesting biological activity presented by these compounds.