## Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against Na<sub>v</sub>s

Reporter: Xiang Gao Checker: Zhong Yan Date: 2016/12/19

Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. *Science* **2016**, *354*, 865.

### **CV of Justin Du Bois**



#### **Stanford University**

- Developing tools for chemical synthesis and exploits such inventions to facilitate access to architecturally complex natural products;
- Contemporaneous efforts to explore the mechanism of C–H amination and to evolve new catalytic systems for C–C, C–N, and C–O bond formation.

#### **Education:**

- **B.S.** University of California, Berkeley, 1992;
- Ph.D. California Institute of Technology (Prof. Erick Carreira), 1992-1997.

#### Research experience:

Postdoctoral Fellow

Massachusetts Institute of Technology (Prof. Stephen Lippard), 1997-1999;

#### Independent Research

Department of Chemical & Systems Biology, Stanford University, (1999-now).

## Contents

#### Introduction

✓ Formal synthesis of (+/-)-Batrachotoxin

#### Asymmetric synthesis of (-)-Batrachotoxin

#### Summary

#### Introduction



- An extremely potent cardiotoxic and neurotoxic steroidal alkaloid found in certain species of frogs (poison dart frog), melyrid beetles, and birds;
- Neurotoxin, irreversibly binds to the Na<sup>+</sup> channels to keep it open, LD<sub>50</sub> in mice: 2 ug/kg, in comparison, LD<sub>50</sub> (NaCN) in mice: 6.3 mg/kg;
- Structural features: a pentacyclic core skeleton, an intramolecular hemiketal, a seven membered oxazapane ring.

## Formal synthesis of (+/-)-Batrachotoxin

#### **Retrosynthetic Analysis**



Kurosu, M.; Marcin, L. R.; Grinsteiner, T. J.; Kishi, Y. J. Am. Chem. Soc. 1998, 120, 6627.

#### Synthesis (+/-)-cis-Decalone 13



#### Synthesis of furan substrate 18



Garst, M. E.; Spencer, T. A. J. Am. Chem. Soc. 1973, 95, 250.

#### Synthesis of building block 3



#### Synthesis of building block 30



#### Synthesis of (+/-)-Batrachotoxin 1



## Asymmetric synthesis of (-)-Batrachotoxin

#### **Retrosynthetic Analysis of (-)-Batrachotoxin 1**



Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. Science 2016, 354, 865.

#### Synthesis of building block 5



#### Synthesis of building block 6



## Construction of C ring via radical cascade





OH

D

ŌН

24



## **Construction of building block 29**



#### **Construction of building block 35**



### **Completion of synthesis of Batrachotoxin**





## Summary



# **Kishi's work** [I] Racemic formal synthesis, 40 steps [II] [4+2] Cycloaddition for constructing C&D rings [III] Intramolecular oxa-Michael addition for E ring **Du Bois's work** [I] Asymmetric total synthesis, 26 steps **[II]** Radical cascade for constructing C&D rings [III] Intramolecular S<sub>N</sub>2 reaction for E ring

The phenotypic effects of acute poisons found among the rich pharmacopeia of terrestrial and marine life have been documented from antiquity. Isolation and characterization of toxic compounds have made available important chemical reagents for studying complex biochemical circuits. Studies of this type have revealed a large number of peptide and small molecule agents that target voltage-gated sodium ion channels (Na<sub>v</sub>s), an obligatory class of membrane proteins for bioelectrical signaling. Among the collection of known Na<sub>V</sub> modulators are three structurally related agents, (-)batrachotoxin, veratridine, and aconitine, sterically large, lipophilic amine derivatives believed to share a common binding locus in the inner pore region of  $Na_{v}$ .

The influence of these toxins on ion gating, however, differs distinctly. On one extreme, (-)-BTX, the primary toxic constituent of Colombian poison dart frogs, is a full Na<sub>V</sub> agonist, causing the channel to open more readily at hyperpolarized membrane potentials and blocking fast inactivation. Conversely, the activities of veratridine and aconitine are best described as partial agonism and inhibition of channel function, respectively. Despite recent insights from structural biology into the three-dimensional architecture of prokaryotic  $Na_{v}$ , a molecular understanding of the influence of the site toxins on ion conduction and ion gating kinetics is lacking.

Toxin structure-activity studies, in combination with protein mutagenesis experiments, can address questions related to the dynamical nature of channel function and may guide the rational design of small-molecule modulators of Na<sub>V</sub> activity. The potency of (–)-BTX, its storied history as the archetypal small-molecule site probe, and its unparalleled effects on channel gating render it an optimal "lead" compound for such investigations.