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ABSTRACT: We report an operationally simple protocol
for the catalytic α-deuteration of styrenes. This process
proceeds via the base-catalyzed reversible addition of
methanol to styrenes in DMSO-d6 solvent. The
concentration of methanol is shown to be critical for
high yields and selectivities over multiple competing side
reactions. The synthetic utility of α-deuterated styrenes
for accessing deuterium-labeled chiral benzylic stereo-
centers is demonstrated.

Site-specific incorporation of deuterium into small mole-
cules is frequently practiced to access isotopically labeled

compounds with broad utility in chemical research.1 The
increased strength of C−D bonds often imparts significant
changes in reactivity compared to the C−H isotopologue.2 In
the context of medicinal chemistry, deuterium incorporation is
a commonly used strategy to alter the absorption, distribution,
metabolism and excretion (ADME) properties of drug
candidates.1,3 Deuterium-labeled compounds also serve as
tracers and analytical standards to help elucidate the
mechanism and products of drug metabolism. In synthetic
chemistry, deuterium-labeled compounds are widely used for
kinetic isotope effect measurements and to track reaction
pathways.4 Because of this widespread value, catalytic methods
for the direct conversion of C−H bonds into C−D bonds with
controlled regioselectivity are in high demand.5

There have recently been significant advances made in
selective hydrogen isotope exchange processes, especially at
benzylic positions, adjacent to heteroatoms and on aromatic
rings.5,6 Meanwhile, the deuteration of alkenes has also been
recognized to have high value due to the synthetic and
mechanistic utility of isotopically labeled olefins. Although a
number of impressive metal-catalyzed deuteration methods
have been reported for unactivated alkenes, extension to
styrene derivatives is less developed.7 In addition to competing
arene C−H activation processes, vinyl positional selectivity
increases the challenges associated with selective styrene
deuteration.8 Castarlenas and Oro have reported a Rh-
catalyzed method that addresses these issues to selectively
prepare β,β-dideuterated styrenes.9 Currently, however, an α-
selective styrene deuteration method remains undeveloped.
A large and continuously increasing number of enantiose-

lective styrene functionalization reactions provide rapid access
to benzylic stereocenters found in pharmaceuticals.10 Given
that benzylic C−H bonds are prone to metabolic oxidation,11

improved access to α-deuterated styrenes could harness the
power of asymmetric functionalization methodologies to
prepare chiral C−D isotopologues. Moreover, styrene-α-d1 is

among the most studied deuterium-labeled alkenes and
increased access to its derivatives could facilitate additional
mechanistic studies.12 Commonly practiced routes to α-
deuterated styrenes involve multistep procedures and use
expensive deuteride reagents (e.g., LiAlD4) that limit func-
tional group tolerance.13 An alternative reported method
involves the selective hydroalumination of arylalkynes followed
by addition of D2O.

14 We herein report a practical catalytic
protocol for the α-selective deuteration of readily available
styrene derivatives (Figure 1).

We recently reported that the organic superbase P4-t-Bu is a
highly active catalyst for the anti-Markovnikov addition of
alcohols to styrene derivatives, a reaction controlled by
thermodynamic equilibria.15 Our subsequent mechanistic
studies revealed that methanol (MeOH) addition in polar
solvents leads to an unfavorable equilibrium constant for
formation of the ether product. Using the addition of MeOH
to 4-(trifluoromethyl)styrene (1) as a model reaction, we
measured equilibrium yields of β-phenethyl ether 2 of 21%
(Keq = 0.20) in m-xylene and 9% (Keq = 0.07) in dimethyl
sulfoxide (DMSO) at 90 °C (Scheme 1a). This led us to
hypothesize that if the forward reaction was run in DMSO-d6
solvent, deuterium scrambling of MeOH to MeOD and
reversible addition would result in α-selective styrene
deuteration.16 In an initial experiment, P4-t-Bu (10 mol %)
catalyzed the α-selective deuteration of 1 in 88% yield with
>99% deuterium incorporation (Scheme 1b). We found that
KO-t-Bu had similar activity and this base was selected as the
preferred catalyst for further studies.17

We propose the α-deuteration process proceeds by the
pathway outlined in Scheme 2. First, KO-t-Bu catalyzes MeO−
H/D exchange with DMSO-d6 and forms KOMe. KOMe then
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Figure 1. Catalytic α-selective deuteration of styrenes.
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undergoes nucleophilic addition to the styrene with concom-
itant deuteration of the developing benzylic anion by MeOD,
generating partially deuterated β-phenethyl ether 3. Finally,
KOMe-catalyzed MeOH elimination from 3 forms the α-
deuterated styrene. Mechanistic studies (vide inf ra) support
this sequence of events and the critical role of MeOH.18 We
suspect that styrene deuteration is driven to completion by
equilibration with excess DMSO-d6.

19

Although conceptually straightforward, the α-deuteration
pathway must outcompete multiple facile base-promoted
reactions to be generally selective and useful for a broad
styrene scope. For example, basic DMSO-d6 solutions are
known to readily deuterate weakly acidic arene C−H bonds.20

A potentially larger challenge is avoiding base-catalyzed styrene
polymerization or possible SNAr side reactions.21 A final
requirement for high α-deuterated styrene yield is that the
equilibrium of the alcohol addition reaction must disfavor the
β-phenethyl ether.
We found generally applicable reaction conditions using 1 or

3 equiv of MeOH and 10 mol % KO-t-Bu, although the
optimal reaction temperature and time were adjusted
empirically for each substrate.22 Typically, 1H NMR
monitoring of two initial reaction attempts using 1 and 3
equiv of MeOH allowed the identification of suitable
conditions to obtain a preparative-scale isolated yield; a
description of this process is provided in the Supporting
Information.23 Table 1 shows a diverse scope of styrene

derivatives that undergo 95% or greater α-deuteration with less
than 5% total deuteration in other positions. Electron-poor to
-neutral styrenes are suitable substrates, whereas electron-rich
variants are not electrophilic enough to establish equilibrium
under these conditions.15 Halogenated styrenes, including
ortho-substituted bromide (4), chloride (5) and iodide (6)
variants undergo selective α-deuteration while avoiding SNAr
reactions and aromatic deuteration. Ester (7), amide (8),
(trifluoromethyl)thio (9) and stilbene (10) functional groups
in the meta- and para-positions are also tolerated. Styrenes
consisting of extended aromatic systems and heteroarenes,
both of which contain relatively acidic arene C−H bonds,
undergo selective α-deuteration.24 This includes naphthalene
(11 and 12), anthracene (13), pyridine (14 and 15),

Scheme 1. Mechanistic Experiments Leading to the
Discovery of Styrene α-Deuteration

Scheme 2. Possible Deuteration Pathway and Challenges

Table 1. Styrene Scope for Catalytic α-Selective
Deuterationa

aIsolated yields of alkene, % deuteration determined by 1H and 2H
NMR; reactions run between 50 and 130 °C at 0.5 M of alkene in
DMSO-d6, see Supporting Information. b1H NMR yield, isolated
yields for product 1-α-d (52%) and 15-α-d (61%) were decreased due
to volatility. cNaH used instead of KO-t-Bu.
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isoquinoline (16) and quinoline (17) vinyl arenes. We found
that β-methylstyrene (18) undergoes α- and γ-deuteration,
likely through a simple deprotonation process.20 Meanwhile, a
β-methoxystyrene (19) and a stilbene derivative (20) undergo
selective deuteration. Additional substrates that were examined
are provided in the Supporting Information.
We next performed reaction profile analysis studies to

investigate the critical role of MeOH in enabling selective α-
deuteration over competing side reactions. Using styrene 14,
we tracked α-deuterium incorporation (Figure 2a) and styrene

mass balance (14 + 14-α-d, Figure 2b) using varied quantities
of MeOH (0.25, 0.5, and 1.0 equiv). The deuteration rate was
notably faster when 0.25 equiv of MeOH was used, but the
mass balance rapidly approached 0%.25 In contrast, 1 equiv of
MeOH led to complete α-deuteration while preserving the
mass balance above 90%. The major side product of these
reactions is the corresponding polystyrene, which is the only
observed product when KO-t-Bu is used without any alcohol
additive.21 These studies suggest that a critical concentration of
alcohol is required for rapid deuteration of the developing
benzylic anion by MeOD to outcompete anionic styrene
polymerization.
Given the crucial role of the alcohol in this process, we

reasoned that modifying its structure could overcome addi-
tional competing side reactions. Although ortho-halogenated
styrenes undergo efficient α-deuteration (Table 1), we found
that the more activated 2-chloro-3-vinylpyridine (21) primarily
underwent SNAr with only 21% α-deuteration of 21 when
MeOH was used (see Supporting Information). We reasoned
that a larger, but still nucleophilic, alcohol could promote α-
deuteration over aromatic substitution. We discovered that use

of 1-cyclopropylethanol (22) and 18-crown-6 led to 96% α-
deuteration in 63% yield (eq 1).26 We expect this strategy
could be utilized if other challenging substrates are
encountered.

In addition to their value for mechanistic experiments,
another utility of α-deuterated styrenes is their elaboration to
deuterium-labeled chiral benzylic stereocenters of pharmaceut-
ical relevance, positions frequently prone to metabolic
oxidation.11 To highlight this potential, Figure 3 shows three
deuterium-labeled chiral compounds, including the pharma-
ceutical cinacalcet (23), that were rapidly prepared from
substrates in Table 1.10a,27 We expect this simple catalytic
deuteration protocol will find use in these and related
applications.
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Figure 2. Reaction profile for the (a) deuteration rate and (b) mass
balance for substrate 14 from Table 1 at 70 °C; values determined by
1H NMR spectroscopy.

Figure 3. Preparation of deuterium-labeled chiral compounds from α-
deuterated styrenes in Table 1. aIsolated yield of product starting from
α-deuterated styrene substrate; see Supporting Information for
synthetic details.
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