Literature Report VII

Transition Metal-Catalyzed Enantioselective C-C Bond Cleavage of Cyclobutanols and Cyclobutanones

Huang, W.-X. checker: Yu, C.-B.

2014-04-29

Contents

- **1. Background Information**
- 2. Pd-Catalyzed Enantioselective C-C Bond Cleavage
- 3. Rh-Catalyzed Enantioselective C-C Bond Cleavage
- 4. Ni-Catalyzed Enantioselective C-C Bond Cleavage
- 5. Summary

1. Background Information

Figure 1. Inert C-C Bond

Ring Strain Liberated!

Figure 2. Two Major Pathways for C-C Activation

Figure 3. General Synthetic Strategies for the Cyclobutanols

Cramer, N. et al. Synlett 2011, 4, 449.

2. Pd-Catalyzed Enantioselective C-C Bond Cleavage

Figure 4. Pd-Catalyzed Oxidative Ring Cleavage of *tert*-Cyclobutanols

Uemura, S. et al. J. Am. Chem. Soc. 1999, 121, 2654.

Figure 5. Pd-Catalyzed Enantioselective C-C Bond Cleavage of Cyclobutanols

Uemura, S. et al. J. Am. Chem. Soc. 2003, 125, 8862.

Figure 6. Pd-Catalyzed Asymmetric Arylation of Cyclobutanols

Entry	Cis/Trans	GLC yields (%)	Ee (%)
1	80/20	16	36
2	85/15	36	43
3	90/10	40	50
4	95/5	33	54
5	98/2	42	59

Figure 7. Asymmetric Arylation of tert-Cyclobutanols with Aryl Bromide

Uemura, S. et al. J. Am. Chem. Soc. 2003, 125, 8862.

3. Rh-Catalyzed Enantioselective C-C Bond Cleavage

Figure 8. Enantioselective β -Alkyl Cleavage by Rhodium

Figure 9. Rh-catalyzed Addition and Ring-Opening

Murakami, M. et al. Org. Lett. 2006, 8, 3379.

Figure 10. Rh-Catalyzed Reaction of Cyclobutanones

Murakami, M. et al. J. Am. Chem. Soc. 2007, 129, 12086.

Figure 11. Deuterium-Labeling Experiment

Murakami, M. et al. J. Am. Chem. Soc. 2007, 129, 12086.

Figure 12. Asymmetric Synthesis of 4,4-Disubstituted 3,4-Dihydrocoumarins

R = Alkyl, Aryl; 6 examples, up to 95% ee

Figure 13. C-C Bond Activation for the Synthesis of Cyclic Ketones

Up to 95% ee

Uemura, S. et al. J. Am. Chem. Soc. 2003, 125, 8862.

Cramer, N. et al. Angew. Chem. Int. Ed. 2008, 47, 9294.

Figure 14. Rhodium-Catalyzed C-C Activation of Cyclobutanols

Cramer, N. et al. Angew. Chem. Int. Ed. 2008, 47, 9294.

Figure 15. Rh-Catalyzed Rearrangement of Allylic *tert*-Cyclobutanols

Cramer, N. et al. Chem. Eur. J. 2010, 16, 3383.

Figure 16. Mechanistic Manifold for the Observed Product Distribution

Cramer, N. et al. Chem. Eur. J. 2010, 16, 3383.

Figure 17. Enantioselective Synthesis of Indanols from tert-Cyclobutanols

Figure 18. Enantioselective Synthesis of Indanones from tert-Cyclobutanols

Hartwig, J. F. et al. J. Am. Chem. Soc. 2006, 128, 3124.

Cramer, N. et al. Synlett 2010, 1699.

Figure 19. Rh-Catalyzed 1,4-Silicon Shift of Unactivated Silanes

Cramer, N. et al. Angew. Chem. Int. Ed. 2010, 49, 10163.

Figure 20. Rh-Catalyzed Ring-Opening/Protonation Process

Cramer, N. et al. J. Am. Chem. Soc. 2010, 132, 5340.

Figure 21. 1,3-Rh Shift Leads to Diastereoselective Deuteration

Cramer, N. et al. J. Am. Chem. Soc. 2010, 132, 5340.

Figure 22. Rh-Catalyzed Carboacylation of Olefins:

Dong, G.-B. et al. J. Am. Chem. Soc. 2012, 134, 20006.

Figure 22. Rh-Catalyzed Enantioselective C-C Activation of Cyclobutanones

Cramer, N. et al. Angew. Chem. Int. Ed. 2014, 53, 3001.

4. Ni-Catalyzed Enantioselective C-C Bond Cleavage

Murakami, M. et al. Angew. Chem. Int. Ed. 2012, 51, 2485.

5. Summary

Introduction of the Corresponding Author

Masahiro Murakami Kyoto University

Nicolai Cramer EPFL Lausanne

Guangbin Dong University of Texas at Austin

5. Summary

Pd-Catalyzed Asymmetric C-C Bond Cleavage

Enantioselective β -Carbon Elimination

Ni-Catalyzed Asymmetric C-C Bond Cleavage

Asymmetric Oxidative Cyclization Diastereoselective β -Carbon Elimination

Rh-Catalyzed Asymmetric C-C Bond Cleavage

The selective functionalization of carbon-carbon (C-C) σ bonds by transition-metal catalysts is a prime challenge for organometallic chemistry and represents a complementary synthetic strategy that enables uncommon retrosynthetic disconnections. Important progress has been made over the past decade in the field of C-C activation. However, despite their recognized importance, the development of asymmetric reactions lags behind. For instance, most enantioselective variants have been reported for the β -carbon elimination mechanism that allows C-C bond cleavages adjacent to tertiary alcohols. For reactions involving C-C cleavage through oxidative addition at transition metals, strained ketones have proven highly versatile.

In summary, we report an asymmetric rhodium(I)-catalyzed C-C activation of cyclobutanones that gives efficient access to the valuable bicycloheptanone scaffold with exceptionally high enantioselectivity. This demonstrates the feasibility of selective oxidative additions of enantiotopic C-C bonds at high reaction temperatures. The method shown allows rapid access to complex cyclic structure and serves as a blueprint for the design of further asymmetric C-C bond activations.

谢谢大家,请多批评指正!