Regioselective Allene Hydrosilylation Catalyzed by *N*-Heterocyclic Carbene Complexes of Nickel and Palladium

Reporter: Bo Wu Checker: Wen-Xue Huang Date: 2013/10/29

Montgomery, J. *et al. J. Am. Chem. Soc.* **2013**, *135*, 15282.

University of Michigan

Contents

Introduction

- Diene Hydrosilylation
- Allene Hydrosilylation
- Summary

Introduction

Hiyama Cross-coupling

 $R^{1}-SiY_{3} + X-R^{2} \xrightarrow{Pd \text{ cat., } F^{\ominus}} R^{1}-R^{2} + Y_{3}Si-X$ $R^{1} = Alkenyl, Allyl, Aryl; Y = F, Cl, Alkyl$ $X = Cl, Br, I, OTf; R^{2} = Aryl, Alkyl, Alkenyl, Alkynyl$

Hiyama, T. et al. Chem. Soc. Rev. 2011, 40, 4893.

Introduction

Hosomi-Sakurai Reaction

Hosomi, A. et al. Chem. Lett. 1976, 941.

Ritter, T. et al. J. Am. Chem. Soc. 2010, 132, 13214.

Entry	Catalyst	Mol %	Time (min)	Tem (°C)	Yield (%)	Ratio 1:2
1		3	300	60	0	-
2		100	240	60	60	2:1
3	Co ₂ (CO) ₈	100	60	60	72	2:1
4	Co ₂ (CO) ₈	150	60	60	69	2:1
5	Co ₂ (CO) ₈	250	100	25	82	2:1

Isobe, M. et al. Tetrahedron 2001, 57, 10241.

Entry	R	R'	Yield (%)	Ratio 3:4
1	н	SiEt ₃	51	3:1
2	Ac	Ac	50	4:1
3	Piv	Piv	67	10:1

$R^{1} \rightarrow R^{3} + R_{3}SiH \xrightarrow{\text{cat. AlCl}_{3}, CH_{2}Cl_{2}} R^{1} \rightarrow R^{3} + R_{3}SiH \xrightarrow{\text{cat. AlCl}_{3}, CH_{2}Cl_{2}} R^{1} \rightarrow R^{2} 2 SiR_{3}$						
Entry			1			
Entry —	R ¹	R ²	R ³	Ar	DOIK3	
1	Н	Н	Н	C_6H_5	HSiMe ₂ Et	2a (76)
2	Н	Н	Н	p-Me-C ₆ H ₄	HSiMe ₂ Et	2b (78)
3	Н	Н	Н	<i>p</i> -F-C ₆ H ₄	HSiMe ₂ Et	2c (96)
4	Н	Н	Н	<i>p</i> -CF ₃ -C ₆ H ₄	HSiMe ₂ Et	- (0)
5	Ме	Н	Н	p-Me-C ₆ H ₄	HSiMe ₃	2e (60)
6	Ме	Н	Н	C_6H_5	HSiMe ₃	2f (66)
7	Ме	Н	Н	<i>p</i> -F-C ₆ H ₄	HSiMe ₃	2g (72)
8	Ме	Ме	Н	<i>p</i> -F-C ₆ H ₄	HSiMe ₃	2h (58)
9	Н	Н	Me	<i>p</i> -F-C ₆ H ₄	HSiMe ₃	2i (46)

Yamamoto, Y. et al. J. Org. Chem. 1999, 64, 2494.

Montgomery, J. et al. J. Am. Chem. Soc. 2013, 135, 15282.

Cy	, + Et₃SiH –	Ni(COD) ₂ (10 mol%) or Pd ₂ (dba) ₃ (5 mol%) L•HX (10 mol%) KO ^t Bu (10 mol%) THF, rt	Cy3	+ Cy 4
Entry	Precatalyst	L·HX	Yield (%)	Regiosel. (3:4)
1	Ni(COD) ₂	5a	22	33:67
2	Ni(COD) ₂	5b	15	40:60
3	Ni(COD) ₂	6a	58	85:15
4	Ni(COD) ₂	6b	47	81:19
5	Ni(COD) ₂	7	84	>98:2
L•HX = Mes IM IM	$ \begin{array}{c} & & & Cl^{\Theta} \\ & & & Mes \\ & & Mes \\ & & & HCl (5a) \\ & & & & & \\ & & & & & \\ & & & & & $	Mes N Mes SIMes•HCI (5b)		Pr Ph

R 8	 conditions A Ni(COD)2 (10 mol%) F7 (10 mol%) <a href="mailto:KO<sup>t</sup>Bu">KO^tBu (10 mol%) THF, rt 	– R + Et ₃ SiH	conditions B Pd ₂ (dba) ₃ (5 mol%) 5a (10 mol%) KO ^t Bu (10 mol%) THF, rt	→ SiEt ₃ R 9
Entry	R	Conditions	Product (yield %)	Regiosel. (3:4)
1		А	3 (84)	>98:2
2	Cy	В	4 (80)	<2:98
3	ⁿ Oct	А	8a (80)	>98:2
4	"Oct	В	9a (98)	<2:98
5	Dh	А	8b (78)	>98:2
6	Pn	В	9b (94)	<2:98
7	HO m	А	8c (62)	>98:2
8	HO HA	В	9c (88)	<2:98
9	TBSO System	А	8d (73)	>98:2
10	TBSU (J4	В	9d (97)	<2:98
11	$\langle \rangle \langle \circ \rangle$	A	8e (78)	>98:2
12	N H3	В	9e (97)	<2:98

Entry	Silane	Product (yield %)	Regiosel.
1	HSiMe ₂ Ph	12a (91)	>98:2
2	HSiMe ₂ Bn	12b (93)	>98:2
3	HSiMe(OSiMe ₃) ₂	12c (82)	>98:2
4	H ₂ Si(^t Bu) ₂	12d (75)	>98:2

Summary

Diene Hydrosilylation

Alkenylsilanes and allylsilanes are useful reagent classes that are employed in numerous synthetic transformations. For example, the Hiyama crosscoupling and Sakurai-type allylation and crotylation reactions are widely used methods for C-C bond formation. Currently, the most direct and atomeconomical routes to vinyl- and allylsilanes proceed via metal-catalyzed hydrosilylations of π -components. The hydrosilylation of alkynes to afford alkenylsilanes and the hydrosilylation of 1,3-dienes to afford allylsilanes are versatile methods that have been widely employed. In both instances, control of regiochemistry is required with unsymmetrical substrates, and even the most efficient hydrosilylation procedures are often plagued by the lack of complete regioselectivity for a variety of substrates without directing group effects. Compounding these challenges is the difficulty typically seen in the separation of regioisomeric allyl- or vinylsilanes produced by these methods.

In summary, the complementary use of metals (Ni vs Pd) results in regiochemical reversals in allene hydrosilylations. Alterations in NHC ligand structure can further improve the regioselectivities to provide regiodivergent access to a wide range of alkenylsilanes or allylsilanes in high yields and with exceptional regiocontrol. The above study demonstrates the special role that metal identity can play in governing regioselective catalytic reactions. Future studies will explore these effects in other classes of catalytic reactions.