Literature Report III

Asymmetric Alternating Copolymerization of Epoxides and Anhydrides

Reporter: Xiao-Qing Wang
 Checker: Zhou-Hao Zhu Date: 2019-8-26

Lu, X.-B. et al. J. Am. Chem. Soc. 2016, 138, 11493.
Lu, X.-B. et al. J. Am. Chem. Soc. 2019, 141, 8937.

Contents

2 Polymerization of Meso-epoxides and Cyclic Anhydrides

3 Polymerization of Racemic Epoxides and Cyclic Anhydrides

4 Summary

CV of Prof. Xiao-Bing Lu

Background:

- 1994-1997 M.S., University of Science and Technology of China
- 1998-2002 Ph.D., Dalian University of Technology
- 2005-now Professor, Dalian University of Technology

Xiao-Bing Lu

Research Interests:

> Stereoregular polymerization
> Asymmetric polymerization

Introduction

Introduction

1. ring-opening polymerization of cyclic esters

lactide

glycolide
2. condensation polymerization of diols with diacids or diesters
high energy cost, high temperature
3. ring-opening copolymerization of epoxides and cyclic anhydrides

Challenge

Formation of ether linkages

Williams, C. K. et al. Chem. Commun. 2015, 51, 6459.

Challenge

Regio- and Stereochemistry of $\mathrm{S}_{\mathrm{N}} 2$-Type Epoxide Ring Opening

Williams, C. K. et al. Chem. Commun. 2015, 51, 6459.

Introduction

Introduction

 $+$

$\xrightarrow[\substack{\text { inorganic salts, } \\ \text { tertiary amines }}]{ }$ or metal-alkyl

Polymer

$\mathrm{M}=\mathrm{Al}, \mathrm{Cr}, \mathrm{Co}, \mathrm{Mn}$ $X=\mathrm{Cl}, \mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}$
= Al, Cr, Co

$\mathrm{M}=\mathrm{Al}, \mathrm{Cr}, \mathrm{Co}$

Hamann, K. et al. Macromol. Chem. Phys. 1964, 75, 211. Kern, R. J. et al. J. Am. Chem. Soc. 1968, 90, 2476. Inoue, S. et al. J. Am. Chem. Soc. 1985, 107, 1358. Inoue, S. et al. Macromolecules 1985, 18, 1049.

Introduction

Coates, G. W. et al. J. Am. Chem. Soc. 2007, 129, 11330.

Introduction

Coates, G. W. et al. J. Am. Chem. Soc. 2011, 133, 10724.

Introduction

Lu, X.-B. et al. Polym. Chem. 2013, 4, 1439.

Introduction

Monometallic pathway of copolymer-chain growth

Bimetallic pathway of copolymer-chain growth

Polymer

Lu, X.-B. et al. Polym. Chem. 2013, 4, 1439.

Introduction

(S,S)-(Cl-salcy) CoNO_{3} (SS-Cat)

poly((S)-propylene succinate) SS-Cat: 86\% H-T linkages RR-Cat: $97 \% \mathrm{H}-\mathrm{T}$ linkages

$\begin{array}{c}\text { RR-Cat } \\ \text { or } \\ \text { SS-Cat }\end{array}$	$[\mathrm{PPN}]\left[\mathrm{NO}_{3}\right]$
$30^{\circ} \mathrm{C}, 36 \mathrm{~h}$	

poly((R)-propylene succinate) RR-Cat: 86\% H-T linkages SS-Cat: 96% H-T linkages

Coates, G. W. et al. J. Am. Chem. Soc. 2014, 136, 15897.

Polymerization of Meso-epoxides and Anhydrides

Lu, X.-B. et al. J. Am. Chem. Soc. 2016, 138, 11493.

Catalyst Screening

Catalyst Screening

Entry ${ }^{\mathbf{a}}$	Catalyst	$\mathbf{t}[\mathbf{h}]$	\mathbf{T} $\left[{ }^{\circ} \mathbf{C}\right]$	Conv $[\%]$	TOF $\left[\mathbf{h}^{-1}\right]$	Ester $[\%]$	$\mathbf{M}_{\mathbf{n}}$ $[\mathbf{k g} / \mathbf{m o l}]$	PDI	Ee [\%]
1	$(R, R, R, R)-\mathbf{1 a}$	0.5	50	60	300	>99	6.4	1.22	0
2	$(R, R, R, R)-\mathbf{1 b}$	0.3	50	64	539	>99	7.3	1.19	$5(R, R)$
3	$(R, R, R, R)-\mathbf{2 a}$	2	50	58	73	>99	4.7	1.23	0
4	$(R, R, R, R)-\mathbf{2 b}$	1	50	78	196	>99	6.2	1.20	$7(R, R)$
5	$(R, R, R, R)-3 \mathbf{a}$	6	50	63	26	42	5.9	8.16	$11(R, R)$
6	$(R, R, R, R)-\mathbf{3 b}$	0.3	50	90	750	>99	9.8	1.14	$71(R, R)$
7	$(R, R, R, R)-3 \mathbf{c}$	5.3	50	99	47	>99	3.9	1.10	$21(R, R)$
$8^{\boldsymbol{b}}$	$(R, R, R, R)-3 b$	0.1	50	0	0	0	8.4	6.65	
9	$(R, R, R, R)-3 b$	2.5	25	98	98	>99	6.6	1.11	$85(R, R)$

${ }^{\text {a }}$ Conditions: The reaction was performed in neat $\mathrm{CHO}(5.0 \mathrm{~mL}, 50 \mathrm{mmol})$ in a 20 mL autoclave, CHO/PA/Catalyst/PPNCI = 1000/250/1/2, molar ratio, except for entries 8 and 12. ${ }^{b}$ In the absence of PPNCI. ${ }^{c} \mathrm{CHO} / \mathrm{PA} / \mathrm{Catalyst} / \mathrm{PPNCI}=1000 / 500 / 1 / 2$, molar ratio. ${ }^{d}$ The reaction was carried out in toluene solution CHO /toluene $=1: 2$ (volume ratio). ${ }^{e}$ Equimolecular.

Catalyst Screening

Entry ${ }^{\text {a }}$	Catalyst	t [h]	$\begin{gathered} \mathbf{T} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	Conv [\%]	$\begin{aligned} & \text { TOF } \\ & {\left[h^{-1}\right]} \end{aligned}$	Ester [\%]	M_{n} [kg/mol]	PDI	Ee [\%]
10	$(R, R, R, R)-\mathbf{3 b}$	24	0	96	10	>99	9.5	1.09	$87(R, R)$
11	$(R, R, R, R)-\mathbf{3 b}$	36	-10	99	7	>99	9.0	1.12	$91(R, R)$
12^{c}	$(R, R, R, R)-\mathbf{3 b}$	1	50	98	490	>99	10.6	1.13	$70(R, R)$
13^{d}	$(R, R, R, R)-\mathbf{3 b}$	24	0	96	10	>99	9.5	1.12	$91(R, R)$
14^{d}	(S,S,S,S)-3b	24	0	97	10	>99	9.0	1.12	$91(S, S)$
15	(R,R,R,R,R)-4	2.5	25	44	44	>99	8.7	1.14	$90(R, R)$
16	$(R, R, S, R, R)-4$	48	25	58	3	>99	4.7	1.23	$27(R, R)$
17^{e}	$\begin{aligned} & (R, R, R, R, R)-4 \\ & /(R, R, S, R, R)-4 \end{aligned}$	6	25	63	26	>99	9.8	1.19	$83(R, R)$
18	$(S, S, S, S, S)-5$	18	25	99	14	>99	7.8	1.11	$81(S, S)$

${ }^{\text {a }}$ Conditions: The reaction was performed in neat $\mathrm{CHO}(5.0 \mathrm{~mL}, 50 \mathrm{mmol})$ in a 20 mL autoclave, CHO/PA/Catalyst/PPNCI = 1000/250/1/2, molar ratio, except for entries 8 and 12. b In the absence of PPNCI. ${ }^{c} \mathrm{CHO} / \mathrm{PA} / \mathrm{Catalyst} / \mathrm{PPNCI}=1000 / 500 / 1 / 2$, molar ratio. ${ }^{d}$ The reaction was carried out in toluene solution $\mathrm{CHO} /$ toluene $=1: 2$ (volume ratio). ${ }^{e}$ Equimolecular.

Substrate Scope

Substrate Scope

Entry $^{\mathbf{a}}$	Reactants	$\mathbf{t}[\mathbf{h]}$	\mathbf{T} $\left[{ }^{\circ} \mathrm{C}\right]$	TOF $\left[\mathbf{h}^{-1}\right]$	Ester $[\%]$	$\boldsymbol{M}_{\mathbf{n}}$ $[\mathbf{k g} / \mathbf{m o l}]$	PDI	Ee [\%] ${ }^{\boldsymbol{b}}$
1	CHO/SA	36	25	2	>99	2.3	1.15	$61(R, R)$
2	CHO/GA	36	25	3	>99	3.9	1.34	$60(R, R)$
3	CHO/DGA	36	25	7	47	0.5	1.45	$15(R, R)$
4	CPO/PA	32	25	4	>99	3.3	1.38	$65(R, R)$
5^{c}	CPO/PA	50	25	2	>99	6.1	1.24	$67(R, R)$
6	CBO/PA	30	25	4	>99	10.1	1.18	$75(R, R)$
7^{c}	CBO/PA	13	25	10	>99	4.8	1.10	$85(R, R)$
8	CEO/PA	48	0	2	>99	4.0	1.10	$81(R, R)$
9^{c}	CEO/PA	48	0	3	>99	5.0	1.13	$90(R, R)$

${ }^{\text {a }}$ Conditions: The reaction was performed in neat meso-epoxide ($5.0 \mathrm{~mL}, 50 \mathrm{mmol}$) in a 20 mL autoclave, meso-epoxide/anhydride/($R, R, R, R)-3 \mathrm{~b} / \mathrm{PPNCI}=1000 / 250 / 1 / 2$, molar ratio, except for entries 5, 7 and 9. ${ }^{b}$ Measured by hydrolyzing the polymer and analyzing the resulting diol by chiral GC, and the (R, R)-diol is the major enantiomer. ${ }^{c}$ Epoxide/anhydride/Catalyst/PPNCI = 250/250/1/2, molar ratio; epoxide/toluene =1:2 (volume ratio).

Polymerization of Racemic Epoxides and Anhydrides

Catalyst Screening

Catalyst Screening

Entry ${ }^{\text {a }}$	Catalyst	$\begin{aligned} & \text { Conv } \\ & {\left[^{2}\right]^{b}} \end{aligned}$	$\begin{gathered} M_{\mathrm{n}} \\ {[\mathrm{kDa}]} \end{gathered}$	PDI	$E e_{\text {(epo) }}$ [\%] ${ }^{c}$	$K_{\mathrm{rel}}{ }^{d}$	$E e_{\text {(poly) }}$ [\%] ${ }^{e}$	s-factor ${ }^{f}$
1	$(R, R, R, R, R)-1 \mathbf{a}$	Polyether						
2	$(R, R, R, R, R)-\mathbf{1 b}$	Polyether						
3	$(R, R, R, R, R)-\mathbf{2 a}$	49	43.3	1.13	$92(R)$	152	96 (S)	163
4	$(R, R, R, R, R)-\mathbf{2 b}$	27	20.3	1.13	$34(R)$	33	89 (S)	24
5	$(R, R, R, R, R)-\mathbf{2 c}$	33	34.3	1.23	$45(R)$	35	91 (S)	33
69	$(R, R, R, R, R)-\mathbf{2 a}$	40	43.1	1.16	67 (R)	>300	99 (S)	>300
79	$(S, S, S, S, S)-\mathbf{2 a}$	43	46.2	1.21	75 (S)	>300	99 (R)	>300
8	$(R, R, S, R, R)-\mathbf{2 a}$	45	41.2	1.15	$61(S)$	13	70 (R)	10
9	$(R, R, R, R, R)-3$	42	39.3	1.17	15 (R)	2	11 (S)	1
10	$(R, R, R, R, R)-\mathbf{4 a}$	40	39.8	1.23	$58(R)$	26	85 (S)	22
11	$(R, R, R, R, R)-\mathbf{4 b}$	45	40.3	1.19	$63(R)$	15	73 (S)	12

a Conditions: The reactions were performed under the following conditions: PGE/PA/Catalyst/ PPNX/toluene molar ratio $=1000 / 500 / 1 / 2 / 500 .{ }^{b}$ Calculated using ${ }^{1} \mathrm{H}$ NMR spectroscopy, based on the epoxide. ${ }^{c}$ Measured by analyzing the resulting mixture via HPLC. ${ }^{d}$ Calculated using $K_{\text {rel }}$ $=\ln \left[(1-\mathrm{c})(1-\mathrm{ee}(\mathrm{epo})] / \ln \left[(1-\mathrm{c})\left(1+\mathrm{ee}_{(\text {epo })}\right)\right]\right.$, where c is the conversion of epoxides. ${ }^{e}$ Measured by hydrolyzing the polymer and analyzing the resulting diol via HPLC. ${ }^{f}$ Calculated using s-factor $=$ $\ln \left[1-\mathrm{c}\left(1+\mathrm{ee}_{(\text {poly }}\right)\right] / \ln \left[1-\mathrm{c}\left(1-\mathrm{ee}_{(\text {poly }}\right)\right]$, where c is the conversion of epoxides. ${ }^{g} 0^{\circ} \mathrm{C}$.

Substrate Scope

Substrate Scope

Entry $^{\boldsymbol{a}}$	Reactants	Conv $[\%]$	$\boldsymbol{M}_{\mathrm{n}}$ $[\mathbf{k D a]}$	PDI	$\mathrm{Ee}_{(\text {epo })}$ $[\%]$	$\boldsymbol{K}_{\text {rel }}$	$\mathrm{Ee}_{(\text {poly })}$ $[\%]$	\boldsymbol{s}-factor
$1^{\boldsymbol{f}}$	PGE/PA	40	43.1	1.16	$67(R)$	>300	$99(S)$	>300
$2^{\text {bf }}$	PO/PA	43	4.5	1.08	$72(S)$	93	$95(R)$	84
3	PO/PA	47	9.7	1.19	$82(S)$	65	$91(R)$	53
$4^{\text {bf }}$	BO/PA	40	5.1	1.12	$63(S)$	67	$94(R)$	62
5	BO/PA	48	10.1	1.22	$84(S)$	56	$90(R)$	49
6	HO/PA	43	52.2	1.09	$72(S)$	93	$95(R)$	83
7	MEGE/PA	47	11.5	1.21	$89(R)$	>300	$99(S)$	>300
8	ETGE/PA	46	13.5	1.19	$86(R)$	>300	$99(S)$	>300
9	IPGE/PA	49	34.5	1.16	$96(R)$	>300	$99(S)$	>300

${ }^{\text {a }}$ Conditions: The reactions were performed under the following conditions: epoxide/anhydride/ complex-2a/PPNCI/toluene molar ratio = 1000/500/1/2/500, except for entries 2,4 and 21-26. ${ }^{\boldsymbol{b}}$ The reactions were performed under the following conditions: epoxide/PA/complex-2a/PPNCI/ toluene molar ratio $=200 / 100 / 1 / 2 / 100 .^{c}$ The reactions were performed under the following conditions: epoxide/anhydride/complex-3/PPNDNP/toluene molar ratio $=400 / 200 / 1 / 2 / 200$. ${ }^{d}$ The reactions were performed under the following conditions: PO/MA/complex-3/PPNDNP/ toluene molar ratio $=50 / 25 / 1 / 2 / 50$. ${ }^{e}$ Not detected. ${ }^{f} 0^{\circ} \mathrm{C}$.

Substrate Scope

Entry ${ }^{\boldsymbol{a}}$	Reactants	Conv [\%]	$\boldsymbol{M}_{\mathbf{n}}$ [kDa]	PDI	Ee $_{(\text {epo }}$ $[\%]$	$\boldsymbol{K}_{\text {rel }}$	Ee $_{(\text {poly })}$ [\%]	\boldsymbol{s}-factor
10	TBGE/PA	47	43.4	1.17	$89(R)$	>300	$99(S)$	>300
11	FurGE/PA	49	52.9	1.21	$95(R)$	>300	$99(S)$	>300
12	1-NGE/PA	43	57.8	1.25	$75(R)$	>300	$99(S)$	>300
13	2-NGE/PA	47	55.3	1.28	$88(R)$	>300	$99(S)$	>300
14	BBO/PA	48	46.7	1.14	$91(S)$	>300	$99(R)$	>300
15^{f}	ECH/PA	43	26.8	1.24	$-e$	-	$63(R)$	7
16	SO/PA	49	18.3	1.18	$86(S)$	50	$82(R)$	24
17	PGE/NA	47	61.4	1.17	$85(R)$	128	$95(S)$	104
18^{f}	PGE/4,5-DMPA	45	59.2	1.11	$77(R)$	77	$93(S)$	63

${ }^{\text {a }}$ Conditions: The reactions were performed under the following conditions: epoxide/anhydride/ complex-2a/PPNCI/toluene molar ratio = 1000/500/1/2/500, except for entries 2,4 and 21-26. ${ }^{\boldsymbol{b}}$ The reactions were performed under the following conditions: epoxide/PA/complex-2a/PPNCI/ toluene molar ratio $=200 / 100 / 1 / 2 / 100 .^{c}$ The reactions were performed under the following conditions: epoxide/anhydride/complex-3/PPNDNP/toluene molar ratio $=400 / 200 / 1 / 2 / 200$. ${ }^{d}$ The reactions were performed under the following conditions: PO/MA/complex-3/PPNDNP/ toluene molar ratio $=50 / 25 / 1 / 2 / 50$. ${ }^{e}$ Not detected. ${ }^{f} 0^{\circ} \mathrm{C}$.

Substrate Scope

Entry $^{\boldsymbol{a}}$	Reactants	Conv [\%]	$\boldsymbol{M}_{\mathrm{n}}$ [kDa]	PDI	Ee $_{\text {(epo) }}$ [\%]	$\boldsymbol{K}_{\text {rel }}$	Ee $_{\text {(poly) }}$ [\%]	s-factor
19	PGE/MA	41	35.4	1.27	$40(R)$	5	$45(S)$	4
20	PGE/SA	39	30.6	1.25	$27(R)$	3	$25(S)$	2
21^{c}	PGE/MA	42	9.2	1.22	$67(R)$	52	$93(S)$	56
$22^{\text {df }}$	PO/MA	43	1.8	1.23	$75(S)$	>300	$99(R)$	>300
23^{c}	1-NGE/MA	39	10.4	1.25	$64(R)$	>300	$>99(S)$	>300
$24^{c f}$	2-NGE/MA	33	11.3	1.24	$49(R)$	>300	$>99(S)$	>300
25^{c}	1-NGE/SA	42	13.6	1.23	$64(R)$	31	$88(S)$	30
26^{c}	2-NGE/SA	45	12.8	1.29	$81(R)$	>300	$99(S)$	>300

${ }^{\text {a }}$ Conditions: The reactions were performed under the following conditions: epoxide/anhydride/ complex-2a/PPNCI/toluene molar ratio $=1000 / 500 / 1 / 2 / 500$, except for entries 2,4 and 21-26. ${ }^{b}$ The reactions were performed under the following conditions: epoxide/PA/complex-2a/PPNCI/ toluene molar ratio $=200 / 100 / 1 / 2 / 100 .{ }^{c}$ The reactions were performed under the following conditions: epoxide/anhydride/complex-3/PPNDNP/toluene molar ratio $=400 / 200 / 1 / 2 / 200$. ${ }^{d}$ The reactions were performed under the following conditions: PO/MA/complex-3/PPNDNP/ toluene molar ratio $=50 / 25 / 1 / 2 / 50 .{ }^{e}$ Not detected. ${ }^{f} 0^{\circ} \mathrm{C}$.

Polymerization of Racemic Epoxides and Anhydrides

Figure 1. The ee values of unreacted PGE and resulting polyesters at various conversions of PGE for enantioselective resolution copolymerization of racemic PGE and PA mediated by $(R, R, R, R, R)-\mathbf{2 a}$ / PPNCl at $0^{\circ} \mathrm{C}$.

Summary

\qquad

Bimetallic synergistic effect
$K_{\text {rel }}>300$, s-factor >300

Lu, X.-B. et al. J. Am. Chem. Soc. 2019, 141, 8937.

The First Paragraph

Kinetic resolution of racemic substrates by chiral catalysts or reagents that mediate the selective reaction of one enantiomer is a powerful strategy for the preparation of enantiopure compounds. A representative example is the hydrolytic kinetic resolution of racemic terminal epoxides catalyzed by chiral salen-Co(III) complexes, a general and effective method for producing highly enantioenriched epoxides, which has found widespread applications in both academic and industrial fields. When such a powerful strategy is applied to the enantioselective resolution copolymerization of racemates with other substrates, optically active polymers with main-chain chirality can be produced, owing to the configurational retention of one enantiomer of the racemates incorporated into the copolymer. This process affords two desirable products, an enantiopure stereoregular copolymer and the unreacted enantiomer. Employing this strategy, several groups independently reported the kinetic resolution copolymerization of racemic propylene oxide and CO_{2} using binary or bifunctional catalyst systems based on chiral salenCo(III)X.

The First Paragraph

Abstract

Although the resultant copolymers have a completely alternating structure and more than 95\% head-to-tail linkages, the kinetic resolution coefficients $\left(K_{\text {rel }}\right)$ are less than 10. The highest $K_{\text {rel }}$ of 24.3 was obtained for the multichiral $\quad(S, S, S)-\mathrm{Co}(I I I)$ catalyst containing a $(1 S, 2 S)-1,2-$ diaminocyclohexane backbone and (S)-configured 2'-isopropyloxy-1,10binaphthyl, for which the resulting poly(propylene carbonate)s were highly regioregular with $>99 \%$ head-to-tail linkages for the selective copolymerization of CO_{2} with the (R)-epoxide over the (S)-enantiomer. A great significant improvement in the kinetic resolution of epoxides by homopolymerization was achieved by using a chiral bimetallic cobalt complex with a binaphthol linker. The catalyst system was highly active for the polymerization of aliphatic terminal epoxides and exhibited selectivity factors (s-factors) in the range from 60 to 370, affording the corresponding polyethers with $>99 \%$ isotactic [mm] content.

The Last Paragraph

Abstract

In summary, herein we report the first highly enantioselective resolution copolymerization of racemic epoxides with anhydrides, mediated by enantiopure bimetallic complexes in conjunction with a nucleophilic cocatalyst. The catalyst systems based on the enantiopure binaphthol-linked bimetallic $\mathrm{Al}(\mathrm{III})$ complex (R, R, R, R, R)-2a or hydrogenated binaphthol-linked Co(III) complex (R, R, R, R, R)-3 exhibit unprecedented levels of enantioselectivity, affording the unreacted epoxides in high enantiopurity, and the highly isotactic copolymers with a perfectly alternating structure and narrow molecular weight distribution. Various racemic terminal epoxides and anhydrides were tested, and most of these copolymerization systems exhibited both high $K_{r e l} s$ and s-factors of more than 300.

The Last Paragraph

The extraordinary level of enantioselection in the enantioselective resolution copolymerization outlined above renders this approach extremely attractive for the practical synthesis of a wide range of chiral polyesters, which are mostly semicrystalline materials with melting temperatures between 77 and $160{ }^{\circ} \mathrm{C}$. Further investigation should focus on understanding the mechanism of this enantioselective copolymerization and developing novel stereoselective resolution copolymerizations of racemic epoxides with other nucleophilic reagents.

Thanks for your attention

Catalyst

[(BDI)ZnOAc]

