

Total Synthesis of Epicolactone

Reporter: Bo Wu Checker: Hong-Qiang Shen Date: 2018/11/12

Kravina, A. G.; Carreira, E. M. *Angew. Chem. Int. Ed.* **2018**, *57*, 13159.

Introduction

Biomimetic Synthesis of Epicolactone

Total Synthesis of Epicolactone

Summary

CV of Prof. Erick M. Carreira

Background:

- **1980-1984** B.S., UIUC (Scott E. Denmark)
- **1984-1990** Ph.D., Harvard University (David A. Evans)
- **1990-1992** Postdoc, Caltech (Peter Dervan)
- □ 1992-1996 Assistant Professor, Caltech
 - **1996-1997** Associate Professor, Caltech
- □ 1997-1998 Professor, Caltech
- **1998-Now** Professor, ETH Zurich

Research Interests:

- Asymmetric synthesis of biologically active and stereochemically complex natural products
- Organometallic chemistry, coordination chemistry and molecular recognition
- Catalytic and stoichiometric reagents for asymmetric stereocontrol, including chiral Lewis acids and transition-metal based reductants

Introduction

Epicoccum nigrum

- Isolated from the sugarcane endophytic fungus *Epicoccum nigrum* in 2012;
- Exhibiting both antimicrobial and antifungal activity;
- Highly oxygenated caged pentacyclic structure.

Marsaioli, A. J. et al. Eur. J. Org. Chem. 2012, 5225.

Biomimetic Synthesis of Epicolactone

HO

Established biosynthesis of purpurogallin

ΌH

Trauner, D. et al. Nat. Chem. 2015, 7, 879.

Proposed Biosynthesis of Epicolactone

Danishefsky, S. J. et al. Org. Lett. 2006, 8, 5693.

Trauner, D. et al. Angew. Chem. Int. Ed. 2014, 53, 13414.

Synthesis of Epicolactone

Synthesis of Compounds 23 and 24

Retrosynthetic Analysis

Carreira, E. M. et al. Angew. Chem. Int. Ed. 2018, 57, 13159.

Vilsmeire-Haack Formylation

Synthesis of Epicolactone

Peterson Olefination

Basic elimination

Acidic elimination

Summary

[2+2] Photocycloaddition, retroaldol-aldol sequence, acid-catalyzed aldol addition

The First Paragraph

Epicoccum nigrum, a ubiquitous endophytic fungus known to colonize economically important cash crops such as sugarcane and cocoa tree, is a source of biologically active secondary metabolites. Among these, a complex and highly oxygenated caged pentacyclic structure, epicolactone (1), was first isolated in 2012. Inspired by the accompanied isolation of speculated biosynthetic precursors from Epicoccum caftbo, elegant biomimetic total syntheses of epicolactone and its related analog dibefurin were reported by Trauner and coworkers. Epicolactone's high density of electrophilic and nucleophilic functional groups make it a formidable task for total synthesis. Moreover, given its quasisymmetric nature, a synthesis of this molecule necessitates the development of chemo- and regioselective transformations on a highly hindered molecular scaffold. Herein, we report a total synthesis of epicolactone which addresses these challenges and provides a complementary entry into this structurally intriguing natural product.

In conclusion, we have developed a robust route for the synthesis of the structurally complex and highly oxygenated natural product epicolactone. An unusual [2+2] photocycloaddition between two electronically similar olefins was employed for the formation of the quaternary centers of the sterically encumbered molecule. A retroaldol-aldol sequence dictated by functional group relationships was employed to synthesize the central cyclopentane embedded in the molecule. In the endphase, an unprecedented acid-catalyzed aldol addition of a dioxene and an intramolecular carbonyl methenylation were developed en route to epicolactone. The application of these reactions to the synthesis of other highly caged and oxygenated natural products is subject to further research in our laboratories and will be reported in due course.

Acknowledgement

Thanks for your attention

Synthesis of Compounds 4 and 6

Bode, J. W. et al. Org. Lett. 2014, 16, 1236.

Rossi, R. et al. Synthesis 2007, 1887.