Copper-Catalyzed sp³ α-C-H Activation of Alcohols

Reporter: Jie Wang Checker: Mu-Wang Chen Date: 2015/04/14

Loh, T.-P. et al. J. Am. Chem. Soc. 2015, 137, 42.

- Introduction
- **Copper-Catalyzed Decarboxylative Alkenylation of sp³ C–H Bonds**
- > Copper-Catalyzed Coupling of sp³ α -Carbon of Alcohols with Alkenes
- Summary

Introduction

6-Deoxyerythronolide B

(+)-Roxaticin

Nucleophilic Addition

Kang, J. Y. *et al. J. Am. Chem. Soc.* **2010**, *132*, 7826. Trost, B. M. *et al. Chem. Soc. Rev.* **2010**, *39*, 1600.

Metal Free

Liu, Z.-Q. et al. Org. Lett. 2009, 11, 1437.

Ru-Catalyzed

Krische, M. J. et al. Science 2012, 336, 324.

Krische, M. J. et al. Angew. Chem. Int. Ed. 2012, 51, 7830.

Copper-Catalyzed Decarboxylative Alkenylation

Liu, Z.-Q. et al. Chem. Sci. 2012, 3, 2853.

Optimization of Reaction Condition

Entry	Catalyst (mol%)	Radical initiator (equiv)	T (°C)	Yield (%)
1	—	TBHP (1.2)	110	—
2	CuBr (5)	TBHP (1.2)	110	17
3	Cu(OAc) ₂ ·H ₂ O (5)	TBHP (1.2)	110	45
4	Cu (5)	TBHP (1.2)	110	72
5	Cu (2)	TBHP (1.2)	110	73
6	Cu (1)	TBHP (1.2)	110	62
7	Cu (2)	TBHP (2.0)	110	99
8	Cu (2)	TBHP (2.0) 70% aqueous	110	49
9	Cu (2)	DTBP	110	14
10	Cu (2)	BPO	110	24
11	Cu (2)	TBHP	90	53

64%

Reaction Selectivity

Tertiary ≥ Secondary > Primary

Mechanistic Study

Possible Mechanism

Copper-Catalyzed Direct Coupling

Loh, T.-P. et al. J. Am. Chem. Soc. 2015, 137, 42.

Product	R	Yield (%)	Product	R	Yield (%)
7a	Н	48	7e	COOMe	39
7b	Br	32	7f	CN	40
7c	CI	50	7g	OCOMe	31
7d	F	45	7h	CF ₃	53

Mechanistic Study

Possible Mechanism

The direct sp³ α -C–H bond activation and functionalization of alcohols and ethers will provide one of the most efficient entries to more functionalized alcohols and ethers. Particularly, the ability to construct new a C-C bond with the β -carbon of alcohols with concomitant retention of the active hydroxyl group in the final products renders this synthetic approach more attractive than the classical methods which utilized the corresponding carbonyl compounds. Furthermore, alcohols are expedient coupling partners as they are readily available, more stable, less toxic, and easier to handle than the corresponding aldehydes. Accordingly, there has been much interest in the generation of α -hydroxy carbon radicals and the subsequent addition to radical acceptors.

In conclusion, we have developed a novel copper- and cobalt-catalyzed three-component oxidative coupling of olefins with hydroperoxides and alcohols which involved the α -C-H activation of alcohols. Various aliphatic, silylated, and aryl 1,3-enynes underwent alkylation peroxidation to assemble β -peroxy alcohols, which further allowed access to propargylic 1,3-diols and β -hydroxyynones. Further studies directed toward the synthetic utilization of enynes are currently underway in our laboratory.