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Retrosynthesis of (+)-Strictamine

N
H

N
H

H

Cl
N

H

Ns

Cl
H

N

CO2Me

Me
H

HN

CO2Me

Me
H

HN

CO2Me

Me
H

HH

(+)-str ictamine (1) 7
Deprotection & Late-Stage

C-N Bond Formation

N
Ns

N
Ns

8

HN

N

Me

H

H

H

O

N

N

Me

H

H

O

H

Reductive Interrupted
Fischer Indolization

PhNHNH2

Ns
N

O
H

H Me

11

O O
Fischer Indolization

O O

Ns
N

H Au-Mediated NsN

9 10 12

N

O
MeH

Au-Mediated
Cyclization

OTBDPS

NsN

Me

enantioenriched

13 14

Garg, N. K. et al. J. Am. Chem. Soc. 2016, 138, 1162.



Enantioselective Total Synthesis of (−)-Aspidophylline A
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Enantioselective Total Synthesis of (+)-Strictamine, (−)-2(S)-Cathafoline
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Enantioselective Total Synthesis of (+)-Strictamine, (−)-2(S)-Cathafoline
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Retrosynthesis of (-)-Vincorine
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Enantioselective Total Synthesis of (-)-Vincorine
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Enantioselective Total Synthesis of (-)-Vincorine
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Summary
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Th k ili lk l id f il f bi ti t lThe akuammiline alkaloids are a family of bioactive natural
products that have been studied for over a century. To date, over
30 akuammilines have been isolated, examples of which are
shown in Figure 1 (1−6). These natural products can be divided
into four structural subclasses, with completed total syntheses
recently reported in three of these categories. Aspidophylline A (3),y p g p p y ( )
an example of the furoindolinecontaining subclass, has been
accessed synthetically by our group and the laboratories of Zhu
and Ma. In addition, our laboratory has completed the totaland Ma. In addition, our laboratory has completed the total
synthesis of picrinine (6), a C5-oxidized akuammiline. With regard
to the skeletally rearranged akuammilines, breakthroughs include
total syntheses of vincorine (4) by Qin Ma and MacMillan andtotal syntheses of vincorine (4) by Qin, Ma, and MacMillan, and
total syntheses of scholarisine A (5) by Smith and Snyder.



In summary, we have completed the first total syntheses of twoIn summary, we have completed the first total syntheses of two
akuammiline natural products that possess a methanoquinolizidine
core. Our asymmetric approach to 1 and 2 features a gold-
mediated cyclization to assemble the [3 3 1]-azabicyclic core of themediated cyclization to assemble the [3.3.1]-azabicyclic core of the
natural products, a reductive interrupted Fischer indolization
reaction to introduce the key C7 quaternary stereocenter and
access late stage compounds and a series of carefully executedaccess late-stage compounds, and a series of carefully executed
late-stage transformations to complete the total syntheses.
Moreover, we have also completed the first enantioselective total

h i f id h lli A (3) Th di isynthesis of aspidophylline A (3). These studies constitute new
achievements in the popular area of akuammiline alkaloid
synthesis, and provide many lessons that should impact future
endeavors in the synthesis of complex molecules.



Enantioselective Total Synthesis of (-)-Vincorine

Enantioselective Organocatalytic Cascade Sequence
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Enantioselective Total Synthesis of (-)-Vincorine
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Enantioselective Total Synthesis of (-)-Vincorine

Organocatalytic Diels-Alder/Cyclization Cascade

entry HX T (oC) t (h) yield (%)a ee (%)b

1 HClO4 0 4 38 88

2 HCl 0 4 25 732 HCl 0 4 25 73

3 HBF4 0 4 71 93

4 HBF4 -10 6 75 944

5c HBF4 -10 6 62 94

6 HBF4 -20 6 73 (70)d 95
a Yield based on SFC analysis relative to an internal standard; b Determined by SFC analysis; c

Reaction run with 5% v/v water; d Isolated yield.



Enantioselective Total Synthesis of (-)-Vincorine

Evaluation of Radical Cyclization Substrates

entry COX conditions conc. (mM) conv. (%) yield (%)a

1 120 oC, 1 h 4 100 18
N

O

O
S

2 120 oC, 3 h
Bu6Sn6, hv 4 38 17

3 120 oC, 5 h
Bu6Sn6 hv 4 85 17Se

O

Bu6Sn6, hv

4 120 oC, 12 h 6 100 8

5 160 oC, 12 h 6 100 31
Te

O

6b 200 oC, 10 h 6 100 51c

a Yield based on 1H NMR analysis; b 1,2-Dichlorobenzene used as solvent. c Isolated yield.



Enantioselective Total Synthesis of (−)-Aspidophylline A

Fischer Indole Synthesis
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