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ABSTRACT: We show that a chiral copper hydride
(CuH) complex catalyzes C—C bond-forming dearomati-
zation of pyridines and pyridazines at room temperature.
The catalytic reaction operates directly on free hetero-
cycles and generates the nucleophiles in situ, eliminating
the need for stoichiometric preactivation of either reaction
partner; further, it is one of very few methods available for
the enantioselective 1,4-dearomatization of heteroarenes.
Combining the dearomatization with facile derivatization
steps enables one-pot syntheses of enantioenriched
pyridines and piperidines.

D earomatization of electron-deficient heteroarenes with
carbon nucleophiles is an essential transformation for the
synthesis of pyridines and piperidines, which are the two most
common azaheterocycles in FDA-approved small-molecule
drugs."**~¢ However, direct dearomative addition to pyridine
generally requires harsh conditions*" and has limited
compatibility with complex, functionalized molecules. Most
C—C bond-forming pyridine dearomatizations employ acti-
vated substrates generated through stoichiometric functionali-
zation of the heterocyclic nitrogen with strong electrophiles.”””
Though useful, this approach has a number of limitations. For
instance, many methods require presynthesis of the activated
heterocycle’ or prior formation of the nucleophile, and
separate deprotection steps are commonly required to cleave
the activating group from the dihydropyridine (DHP) product.
Further, whereas numerous methods exist for asymmetric 1,2-
dearomatization,™™® achieving stereocontrol in 1,4-selective
variants has proven much more challenging. The latter
transformation is seldom possible without auxiliaries or
preformed chiral nucleophiles (Figure 1A,B) j>oae asymmetric
catalysis of pyridine 1,4-dearomatization’*™ was unknown until
very recently,” and highly enantioselective catalytic reactions
(Figure 1C)""" are currently only possible with a narrow set of
multiply activated cationic substrates. A number of catalyzed
additions of hydride or silyl nucleophiles have been reported
that operate directly on pyridine rather than on stoichiometri-
cally activated derivatives,” ™ but there are no reactions of this
type that achieve either C—C bond-formation or asymmetric
induction. In this Communication, we show that a chiral copper
complex catalyzes C—C bond-forming dearomatization under
mild conditions without requiring activation of the heterocycle,
preformation of the nucleophile, or protecting group
manipulations (Figure 1D). Moreover, the reaction is a very
rare example of highly enantioselective catalytic 1,4-dearoma-
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Figure 1. Methods for stereocontrolled 1,4-dearomatization; (A) with
chiral auxiliaries; (B) with chiral nucleophiles; (C) using asymmetric
catalysis; (D) this work: asymmetric direct catalytic dearomatization.

tization, it succeeds with a broad selection of substituted
pyridines and pyridazines, and it generates DHPs that can be
converted to enantioenriched pyridines or piperidines in the
same pot.

We hypothesized that pyridine could be activated toward
nucleophilic dearomatization in an asymmetric hydrofunction-
alization reaction,”'” thereby permitting direct dearomatization
of the heterocycle while replacing preformed nucleophiles with
abundant olefin precursors. Subjecting a mixture of pyridine
and styrene to (Ph-BPE)CuH, prepared as before (eq 1),'""*
gave 97% conversion ("H NMR) to a mixture of dihydropyr-
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styrene (2.0 equiv.), Me Ph
P 4.0% Cu(OAc),, 92% NMR yield 1a
| 4.4% (S,S)-Ph-BPE (crude) 1
—_—- B
|| +1,2-DHP isomer ¢4 ")

SN DMMS (3.0 equiv),

THF (0.5 mL), rt, 20 h N (5% NMR yield)

0.5 mmol 1a éiMe(OMe)z

idines strongly biased in favor of the 14-adduct la (22:1
average 1,4:1,2). Treating crude DHPs with 0,* provided
efficient rearomatization and enabled a one-pot synthesis of
functionalized pyridines (generically, 3; Table 1A). Chiral
analysis of pyridine 3a (90% ee) indicated that the
dearomatization had occurred with high enantloselectmty and
that the aerobic rearomatization was stereospecific.'” Applying
the dearomatization to the synthesis of enantioenriched
piperidines also proved to be straightforward: adding NaHB-
(OAc); to crude DHPs provided good yields of plperldlnes
(generically, 4; Table 1B) in a one-pot operation'* that could
be conducted on gram-scale without appreciable loss of yield or
selectivity (4p; Table 1B).

The dearomatization/reoxidation protocol succeeded with
pyridines, pyridazines, and a variety of C3-substituted
derivatives thereof. The enantioselectivity obtained with
pyridazines (3g—k; Table 1A) was consistently excellent and
insensitive to the presence of electron-donor groups; in
contrast, the ee’s obtained with pyridines were moderately
depressed by electron-releasing groups (e.g., 3d; Table 1A) and
enhanced by aryl and z-acceptor substituents (3e, 4s—u; Table
1A,B). Substituted pyridines were also viable substrates for
dearomatization/reduction, and stereochemical analysis of

products 4s—u (Table 1B) revealed that both transformations
exert control over the endocyclic stereocenters they respectively
generate, leading to mixtures of diastereomeric piperidines
having a major bias for the 4 (a,s) diastereomers [see inset in
Table 1B for explanation of nomenclature]. The major
diastereomers were isolable in stereochemically pure form,
and thus the dearomatization/reduction protocol enabled
selective preparation of piperidines containing three contiguous
stereocenters starting from prochiral substrates. Our work with
this series provided key insights into the stereochemical
properties of the asymmetric dearomatization. Single-crystal
X-ray-diffraction analysis of 4s (a,s)-HCI revealed its absolute
conﬁguration,ls’16 making it clear that dearomative addition is
retentive with respect to the benzylic stereocenter set during
hydrocupration and selective for (Ca,C4)-anti DHPs, whereas
the reduction is selective for (C3,C4)-syn piperidines. The basis
for anti-selective dearomative addition is unclear at present, but
it appears to be general.ls’17 Notably, retention of the
phenethylcopper stereocenter contrasts with the clean inversion
Aggarwal observed in the addltlon of chiral phenethylboronates
to acylpyridiniums (Figure 1B);> our result is mechanistically
interesting given that the organocopper nucleophiles 1nvolved
here do undergo invertive addition in other transformations.”
Unlike C3 substituents, groups at C4 are only accommo-
dated in special cases (as in 4r; Table 1B), and substitution at
C2 is not tolerated even for substituents that increase the
intrinsic electrophilicity of the free heterocycle (e.g, CF,
CO,Me). Further, examples 3i—k (Table 1A) show that
organocopper nucleophiles preferentially add para to the less

Table 1. Asymmetric Dearomative Syntheses of Functionalized Pyridines (A) and Piperidines (B)
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OMe
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P 2N
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96% (97%)° ee

MeO.
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. / . N .
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Me 3i N™ " 3j
96% NMR yield 1i + 1i’ (1i:1i" = 8:1) 54% isol. yield 3j 100% NMR yield 1k
49% isol. yield 3i + 3i’ (3| 3i'=7:1) ee = 98% 58% isol. yield 3k

98% ee (3i), 96% ee (37’) ee =93%
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R! (2.0 equiv), R, NaBH,
R 4.0% Cu(OAC), - R? (8.0 equiv)
| 4.4% (S,S)-Ph-BPE, AcOH, rt,
SN DMMS (3.0 equiv), N overnight N
29 THF, rt, 24 h 1 SIMe OMe), 4 H
4a (R = H) 40 (X = BI’)
86% yield, 90% ee 88% yield, 68% ee;
Me Me 55% overall, 94% ee
41 (R = Me) X after recrystallization
R  84%yield, 92% ee of HCI salt, NaOH
4am (R = OMe) 4p (X=F)
N 75% yield, 95% ee 89% yield, 91% ee
H 4n (R = Cl) 10 mmol scale:
o i 0 81% yield (1.68 g)
75% yield, 81% ee 89% ee

Labelling Conventions

Ph N Me Ph Me Ph
K/)\l Ca Ca
| ca | R () caR
N
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N
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H 4r H 4s(as)? H 4t (a,s) H 4u (a,s)
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90% yield isolated from a mixture isolated from a mixture isolated from a mixture
76 ee% (89% vyield) withdr = (76% yield) withdr= (87% yield) withdr =

(12.6):(2.4):(1.0):(0.1)  (7.1):(1.4):(1.0):(0.5)  (11.4):(2.7):(1.0):(0.1)
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“Reactions used 1 mmol 2, 2 equiv olefin except where noted. bsee SI for details. “O, was used for 3b—k; dyields and ee’s are averages for two runs
except where noted; “reaction used 4.0% Cu(OAc),, 4.4% Ph-BPE; Fone measurement; Sused 0.5 mmol 2; *used 1.5 equiv olefin; ‘used 1.1 equiv

olefin; 7ee determination used the N-BOC derivative.
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hindered nitrogen even when this entails attack on the more
encumbered and more electron-rich of the two activated sites.
These observations concerning C2 substitution can be readily
rationalized if one invokes coordination of the heterocycle to a
sterically demanding Lewis acid (e.g, Cu) in the dearomative
addition step.

The dearomatization is compatible with various aryl alkene
substituents, but certain trends involving this reactant were very
surprising. Dearomatization exhibits useful levels of selectivity
for a variety of olefin f3 substituents (3b, 3k, 4q; Table 1A,B),
and ortho substitution is broadly tolerated (3c, 4l1—n; Table
1A,B). But surprisingly, when groups such as F, Me and OMe
are present at the para position of the styrene, they completely
suppress dearomatization. This observation runs counter to all
our previous experience with styrene hydrofunctionalizatio-
n'*7° and leads us to propose that para substituents incur a
destabilizing interaction unique to the dearomative addition
transition state. Consistent with this, we observed some
sensitivity to the steric demand of the meta substituent; thus,
3-methylstyrene is problematic for pyridine but not pyridazine
(3g, 3h; Table 1), whereas meta-halides are tolerated with both
(3g, 3i, 40—p; Table 1A,B).

Figure 2 illustrates one plausible mechanism for the Cu-
catalyzed direct dearomatization. Activation of the heterocycle

\/Ar
ii I CuL2
L,*CuH | CuXLz O
S|Me OMe), DMMS CuL*

Figure 2. Plausible mechanism for the direct dearomatization.

occurs through formation of dative complex I (step i), which
undergoes dearomatization with an organocopper nucleophile
(I1) (step iii)."”'® The resulting N-cuprated DHP inter-
mediate (III) could then furnish product IV and the
regenerated catalyst via o-bond metathesis with the silane
(step iv), similarly to transmetalation 1processes implicated in
other catalytic hydrofunctionalizations.”"*'? We are currently
undertaking a detailed mechanistic investigation directed at
elucidating how activation and addition occur in this reaction.

In summary, we have demonstrated that pyridine and
pyridazine undergo direct asymmetric dearomatization in the
presence of a chiral CuH catalyst. This unique reaction
eliminates the need for extraneous activation and nucleophile-
formation steps, and it permits one-pot syntheses of highly
enantioenriched C4-functionalized heterocycles. We expect that
our ongoing mechanistic investigations will shed light on the
unusual reactivity trends we observe and aid in the discovery of
more general dearomative transformations.
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