Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram

Linwei Huang, Jinbin Zhu, Guangjun Jiao, Zheng Wang, Xingxin Yu, Wei-Ping Deng,* and Wenjun Tang*

Abstract

Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a $R h /(R, R, R, R)$-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R, R, R, R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram.

Chiral diaryl alkyl carbinol moieties exist in a number of therapeutic agents and natural products, ${ }^{[1]}$ such as the antidepressant escitalopram, ${ }^{[2 a]}$ antihistamine clemastine, ${ }^{[2 b]}$ cough suppressant chlophedianol, ${ }^{[2 c]}$ multi-AGC kinase inhibitor AT13148, ${ }^{[2 \mathrm{~d}]}$ fungicide flutriafol, ${ }^{[2 \mathrm{e}]}$ and lignan hydroxyotobain ${ }^{[2 f]}$ (Figure 1). The efficient synthesis of these chiral

AT13148

(+)-clemastine

(+)-flutriafol

(S)-chlophedianol

hydroxyotobain

Figure 1. Therapeutic agents or natural products containing chiral diaryl alkyl carbinol moieties.

[^0]tertiary alcohols have thus gained a great deal of attention. Among the various methods, ${ }^{[3]}$ the catalytic asymmetric arylations of ketones stand out to be most attractive. ${ }^{[4,5]}$ In particular, asymmetric addition of nontoxic, stable, and operationally simple aryl boron reagents to simple unactivated ketones is highly desirable yet remains challenging. Despite the recent advances in asymmetric additions of arylboron reagents to aldehydes, ${ }^{[6]}$ activated ketones, ${ }^{[7]}$ or ketones in an intramolecular fashion, ${ }^{[8]}$ few successful results were reported on asymmetric intermolecular addition of aryl boron reagents to simple ketones. ${ }^{[9]}$ Low enantioseletivities were reported for either chiral nickel or rhodium catalysts (a Ni /chiral N -heterocyclic carbene ligand: $36 \% e e,^{[9 \mathrm{a}]}$ a $\mathrm{Rh} /$ chiral bisphosphine: $38 \% e e e^{[9 b]} \mathrm{a} \mathrm{Rh/chiral}$ diene: $\left.68 \% e e\right) .{ }^{[9 \mathrm{c}]}$ A low yield was also observed in our previous study, albeit with an improved enantioselectivity (25% yield, 95% ee)..$^{[71]}$ To our knowledge, both excellent enantioselectivities and yields are yet to be achieved for intermolecular asymmetric additions of aryl boron reagents to simple ketones. Herein we report a highly enantioselective rhodium-catalyzed addition of arylboroxines to simple aryl ketones in excellent yields and with up to 99% ee by using $\mathrm{Rh} /(R, R, R, R)$-WingPhos as the catalyst. This method has enabled an efficient and concise synthesis of the blockbuster antidepressant escitalopram.

Ligand design has played a central role in the development of efficient metal-catalyzed reactions. ${ }^{[10]}$ The design of chiral phosphorus ligands capable of long-range stereocontrol remain a significant challenge with limited success. Because of the less reactive nature and low coordinative ability of simple ketones, in comparison with aldehydes or imines, the intermolecular addition of arylboron reagents to simple ketones relies upon the metal catalyst to bring the two reaction partners into close proximity, as well as provide good stereocontrol at a greater distance from the metal center (Figure 2). A metal catalyst equipped with a diphosphine ligand having a shallow chiral pocket (Figure 2a) will be inefficient for such a reaction in terms of both enantioselectivity and reactivity, whereas a catalyst equipped with a ligand having a deep chiral pocket (Figure 2 b) might offer improved reactivity as well as good long-range stereocontrol. In this sense, (R, R, R, R)-WingPhos, ${ }^{[11]}$ having two anthryl groups in its structure, could not only offer the required stereocontrol, but also help bring two reaction partners into close proximity and lead to high reactivity. Herein we describe the applications of the $\mathrm{Rh} /(R, R, R, R)$-WingPhos catalyst in enantioselective addition of arylboroxines to simple aryl ketones.

$\mathrm{Rh} /(R, R, R, R)$-WingPhos
Figure 2. (R, R, R, R)-WingPhos is capable of long-range stereocontrol for enantioselective rhodium-catalyzed aryl addition to simple ketones.

We chose 4-methoxyphenylboroxine $\mathbf{2 a}$ as the aryl boron reagent for the rhodium-catalyzed nueclophilic addition to acetophenone. The reaction was performed in tert-butyl methyl ether (MTBE) under nitrogen for 18 hours with acetophenone $\quad(0.10 \mathrm{mmol}), \quad 4$-methoxyphenylboroxine (0.20 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as the base in the presence of $\left[\left\{\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right\}_{2}\right] \quad(1.5 \mathrm{~mol} \%)$ and (R, R, R, R)-WingPhos ($3.6 \mathrm{~mol} \%$; Table 1, entry 1). We were pleased that the desired tertiary alcohol $\mathbf{3}$ aa was obtained in 25% yield and $97 \% e e$. Screening of various inorganic bases (entries 1-8) showed CsF provided a best yield (85%) and an almost perfect $e e$ value ($>99 \% e e$). A solvent study (entries 8-12) proved that MTBE is among the best for this transformation. A slightly better yield was achieved when the reaction was performed at $100^{\circ} \mathrm{C}$ (entry 13). To further improve the yield, employment of various inorganic salts as additives was studied (entries 14-18). Gratifyingly, an excellent yield (98%) and $e e$ value ($>99 \%$) were achieved when magnesium bromide was added (entry 18). The magensium salt is believed to help activate the ketone and hence lead to an enhanced yield. The boroxine $\mathbf{2 a}$, as low as 0.4 equivalents, could also be employed, albeit with a diminished yield (65%; entry 19). Use of boroxine as the aryl boron reagent was important since the corresponding boronic acid and pinacol boronate provided slightly diminished conversions (entries 20 and 21). To further demonstrate the importance of (R, R, R, R) WingPhos for both yield and enantioselectivity of this addition, $\mathbf{L} \mathbf{2}$ and $\mathbf{L} \mathbf{3}^{[12]}$ were also employed for this reaction under otherwise identical reaction conditions and both provided inferior yields and ee values (entries 22 and 23). A low conversion was also observed with $\mathbf{L 4}$ as the ligand, ${ }^{[7]}$ thus further demonstrating the superior reactivity of (R, R, R, R) WingPhos as the ligand (entry 24).

Next, the substrate scope of this asymmetric transformation was studied. As depicted in Table 2, a range of diaryl alkyl cabinols were prepared with excellent $e e$ values (95-> 99%) and yields regardless the electronic properties and substitution patterns of the aryl ketones (entries 1-15). Various functional groups such as halide, nitro, sulfone, and ester were compatible. Importantly, ortho-substituted aryl ketones were also tolerable and provided tertiary alcohols

Table 1: Rhodium-catalyzed addition of 4-methoxyphenylboroxine (2a) to acetophenone (1a).

	 12	$1 \mathrm{e}+(4-\mathrm{MeC}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BC}$ 2a	$3 \frac{\left[\left\{R h \left(\mathrm{C}_{2} \mathrm{H}\right.\right.\right.}{\mathrm{L} 1-\mathrm{L} 4,}$	$\xrightarrow{\text { pase } \left.)_{2} \mathrm{C} \xi_{2}\right]}$		OMe
				$\begin{aligned} & \text { L1: } R=9-8 \\ & \text { L2: } R=H \\ & \text { L3: } R=O N \\ & \text { L4: } R=2,6 \end{aligned}$	nthryl [R, R (R, R, R, R) e $[(R, R, R, R)$ $-(\mathrm{MeO})_{2} \mathrm{C}_{6}$	$R, R, R)$-WingPh IBOP])-MeO-BIBOP H_{3}	
No. ${ }^{\text {a] }}$	L*	base	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	Additive	Solvent	Yield [\%] ${ }^{[b]}$	$e e[\%]^{[c]}$
1	L1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	60	-	MTBE	25	97
2	L1	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	60	-	MTBE	15	87
3	L1	KF	60	-	MTBE	18	99
4	L1	$\mathrm{K}_{3} \mathrm{PO}_{4}$	60	-	MTBE	22	95
5	L1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	60	-	MTBE	47	96
6	L1	KOtBu	60	-	MTBE	58	99
7	L1	KOH	60	-	MTBE	61	99
8	L1	CsF	60	-	MTBE	85	>99
9	L1	CsF	60	-	toluene	66	>99
10	L1	CsF	60	-	PhF	37	>99
11	L1	CsF	60	-	DME	45	>99
12	L1	CsF	60	-	CPME	52	>99
13	L1	CsF	100	-	MTBE	87	>99
14	L1	CsF	100	LiCl	MTBE	82	>99
15	L1	CsF	100	MgCl_{2}	MTBE	85	>99
16	L1	CsF	100	AlCl_{3}	MTBE	69	>99
17	L1	CsF	100	$\mathrm{NH}_{4} \mathrm{Cl}$	MTBE	88	>99
18	L1	CsF	100	MgBr_{2}	MTBE	98(96)	>99
$19^{[d]}$	L1	CsF	100	MgBr_{2}	MTBE	65	>99
$20^{[\text {[] }}$	L1	CsF	100	MgBr_{2}	MTBE	88	>99
$27^{[f]}$	L1	CsF	100	MgBr_{2}	MTBE	86	>99
22	L2	CsF	100	MgBr_{2}	MTBE	56	41
23	L3	CsF	100	MgBr_{2}	MTBE	66	31
24	L4	CsF	100	MgBr_{2}	MTBE	28	96

[a] Unless otherwise specified, the reactions were performed under nitrogen for 18 h with acetophenone ($1 \mathrm{a}, 0.10 \mathrm{mmol}$), 4-methoxyphenylboroxine ($2 \mathrm{a}, 0.20 \mathrm{mmol}, 0.60 \mathrm{mmol}$ boron), base (0.40 mmol), and solvent (1.5 mL) in the presence of $\left[\left\{\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right\}_{2}\right]$ ($1.5 \mathrm{~mol} \%$), \mathbf{L}
($3.6 \mathrm{~mol} \%$), and an additive ($35 \mathrm{~mol} \%$). The R absolute configuration of 3 aa was determined by comparing its optical rotation with reported data. ${ }^{[3 \mathrm{~d}]}[\mathrm{b}]$ Determined by HPLC assay. Yield of isolated product given within parentheses. [c] Determined by chiral-phase HPLC using a Lux-Amylose-2 column. [d] 4-Methoxyphenylboroxine (0.04 mmol , 0.12 mmol boron) was employed. [e] 4-Methoxyphenylboronic acid was employed. [f] Pinacol 4-methoxyphenylboronic ester was employed.
with excellent ee values, albeit with diminished yields (entries 10-13). A 2-naphthyl ketone and a 2 -furyl ketone were also applicable (entries 14 and 15). Besides methyl ketones, this method offered remarkably good yields and excellent enantioselectivities for ethyl, n-propyl, and trifluoromethyl ketones (entries 16-19). Various arylboroxines were also employed to provide the corresponding tertiary alcohols in almost perfect $e e$ values and yields (entries 20-26). The reaction of 4'-methoxy acetophenone ($\mathbf{1} \mathbf{j}$) and phenylboroxine ($\mathbf{2 c}$ c) provided (S)-3aa in $99 \% e e$, thus demonstrating the capability of this methodology to produce both antipodes of chiral tertiary alcohols with a single chiral $\mathrm{Rh} /(R, R, R, R)$ WingPhos catalyst (entry 27). The $\mathrm{Rh} /(R, R, R, R)$-WingPhos catalyst was also efficient for addition to benzofused fivemembered cyclic ketones. As shown in Figure 3, the com-

Table 2: Enantioselective rhodium-catalyzed addition of arylboroxines to aryl ketones.

		$\xrightarrow[\mathrm{CsF}, \mathrm{MgBr}_{2}, \mathrm{MTBE}]{\left[\left\{\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right\}_{2}\right], \mathrm{L} 1}$		 3	
No. ${ }^{[1]}$	Ar	R	Ar ${ }^{\prime}$	Yield $[\%]^{[b]}$	$e e$ $[\%]^{[c]}$
1	4-FC6 H_{4} (1 b)	Me	4-MeOC ${ }_{6} \mathrm{H}_{4}$ (2a)	95 (3 ba)	>99
2	4-ClC $6 \mathrm{H}_{4}$ (1 c)	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	96 (3ca)	> 99
3	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$ (1d)	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	96 (3 da)	>99
4	4- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (1 e)	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	95 (3 ea)	> 99
5	$4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(1 \mathrm{f})$	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	95 (3 fa)	> 99
6	$4-\mathrm{MsC}_{6} \mathrm{H}_{4}(1 \mathrm{~g})$	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	93 (3 ga)	>99
7	$4-\mathrm{MeO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}(\mathbf{1} \mathrm{~h})$	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	96 (3 ha)	> 99
8	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}(1 \mathrm{i})$	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	90 (3ia)	97
9	$3-\mathrm{MeOC}_{6} \mathrm{H}_{4}(1 \mathrm{j})$	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	96 (3ja)	>99
10	$2-\mathrm{FC}_{6} \mathrm{H}_{4}(1 \mathrm{k})$	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ (2a)	93 (3 ka)	> 99
11	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$ (1)	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	45 (3la)	98
12	2-MeOC H_{4} (1 m)	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	23 (3 ma)	>99
13	2,4-(MeO) $2_{2} \mathrm{C}_{6} \mathrm{H}_{3}(1 \mathrm{n})$	Me	$4-\mathrm{FC}_{6} \mathrm{H}_{4}(2 \mathrm{e})$	30 (3 ne)	95
14	2-Np (10)	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	96 (3 oa)	> 99
15	2-furyl (1p)	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	80 (3 pa)	95
16	$\mathrm{Ph}(1 \mathrm{q})$	Et	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	91 (3qa)	> 99
17	4-FC $\mathrm{C}_{6} \mathrm{H}_{4}$ (1 r ${ }^{\text {r }}$	Et	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	71 (3ra)	> 99
18	Ph (1 s)	Pr	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	77 (3 sa)	99
19	Ph (1 t)	CF_{3}	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(2 \mathrm{a})$	90 (3 ta)	99
20	4-ClC66 H_{4} (1 c)	Me	4- $\mathrm{MeC}_{6} \mathrm{H}_{4}$ (2b)	86 (3 cb)	99
21	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$ (1d)	Me	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$ (2b)	95 (3 db)	> 99
22	4- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (1 e)	Me	Ph (2c)	97 (3 ec)	99
23	$4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(1 \mathrm{f})$	Me	Ph (2c)	93 (3 fc)	> 99
24	4-MeO $\mathrm{CC}_{6} \mathrm{H}_{4}$ (1i)	Me	$3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ (2d)	96 (3id)	99
25	$\mathrm{Ph}(1 \mathrm{a})$	Me	$3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ (2d)	63 (3 ad)	99
26	4-MeO $\mathrm{CC}_{6} \mathrm{H}_{4}$ (1i)	Me	$4-\mathrm{FC}_{6} \mathrm{H}_{4}(2 \mathrm{e})$	95 (3ie)	> 99
27	4- $\mathrm{MeOC}_{6} \mathrm{H}_{4}(1 \mathrm{j})$		Ph (2c)	$\begin{aligned} & 88 \\ & {[(S)-\mathbf{3 a a}]} \end{aligned}$	99

[a] Unless otherwise specified, the reactions were carried out at $100^{\circ} \mathrm{C}$ in MTBE (1.5 mL) for 18 h with ketone $(0.10 \mathrm{mmol}$), arylboroxine (0.20 mmol), MgBr_{2} (0.35 equiv), and CsF (0.40 mmol) in the presence of $\left[\left\{\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right\}_{2}\right](1.5 \mathrm{~mol} \%)$ and (R, R, R, R)-WingPhos (L1; $3.6 \mathrm{~mol} \%$). The absolute configurations of tertiary alcohols 3 were assigned by analogy to the absolute configuration of $\mathbf{3} \mathbf{a a}$, and the stereochemical model. [b] Yield of isolated product. [c] Determined by chiral-phase HPLC.

3ua
95\% ee, 77\% yield

3va
$>99 \%$ ee, 98% yield

3wa
0% yield

Figure 3. Chiral cyclic tertiary alcohols
pounds $\mathbf{3}$ ua and $\mathbf{3}$ va were efficiently synthesized in excellent yields and enantioselectivities. In contrast, the addition to α tetralone was conformationally more challenging and no conversion was observed under similar reaction conditions.

A simplified mechanism for this rhodium-catalyzed asymmetric addition of arylboroxines to simple aryl ketones is proposed in Figure 4. Transmetallation of the aryl boron

Figure 4. A proposed catalytic cycle and stereochemical model.
reagent with the $[\mathrm{Rh}(\mathrm{Cl})\{(R, R, R, R)$-WingPhos $\}]$ species provides the aryl-Rh species I. This step is followed by coordination of an aryl ketone to form the species II. Migratory insertion of the aryl ketone into the aryl-Rh bond could adopt two possible conformations, \mathbf{A} and \mathbf{B}. DFT calculations ${ }^{[13]}$ have shown that the energy of \mathbf{A} is 2.51 kcal mol^{-1} higher than that of \mathbf{B}, possibly because of the more severe interaction between the aryl group of the ketone and one anthryl moiety of the (R, R, R, R)-WingPhos ligand in \mathbf{A}. The favorable conformer \mathbf{B} undergoes insertion and transmetallation with another aryl boron reagent to provide the chiral tertiary alcohol product with the observed stereochemistry and regenerates I. The chiral pocket formed by the two anthryl moieties of (R, R, R, R)-WingPhos has not only helped bring the aryl group and the ketone substrate closer for high reactivity, but also differentiate effectively between \mathbf{A} and \mathbf{B} to provide excellent enantioselectivity.

To demonstrate the synthetic utility of this asymmetric transformation, the chiral tertiary alcohol $\mathbf{3 c c}$, a key chiral intermediate of $(+)$-clemastine, ${ }^{[2 b]}$ was prepared from commercially available starting materials in a single step (Scheme 1). Thus, a gram-scale reaction between 4^{\prime}-chloroacetophenone (1c) and phenylboroxine ($\mathbf{2 c}$) proceeded smoothly in the presence of $1.5 \mathrm{~mol} \%\left[\left\{\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right\}_{2}\right]$ and $3.6 \mathrm{~mol} \%$ (S, S, S, S)-WingPhos to form 3cc in 99% ee and 95% yield. Furthermore, an enantioselective synthesis of escitalopram was studied by using this methodology (Scheme 2). It should be noted that most reported syntheses of escitalopram rely on chemical or enzymatic resolution ${ }^{[14]}$ of

Scheme 1. Synthesis of the (+)-clemastine intermediate $\mathbf{3 c c}$.

Scheme 2. Synthesis of escitalopram. DIBAL-H = diisobutylaluminum hydride, $\mathrm{dppf}=1, \mathrm{l}^{\prime}$-bis(diphenylphosphino)ferrocene, $\mathrm{Ms}=$ methanesulfonyl.
racemic mixtures, and their overall yields and efficiency were low. An efficient asymmetric synthesis of escitalopram ${ }^{[15]}$ remains a significant challenge. We studied the asymmetric addition of 4-fluorophenylboroxine to 4-chloro-1-(2,4-dichlorophenyl)butan-1-one (4) with the $\mathrm{Rh} /(R, R, R, R)$ WingPhos catalyst. Gratifyingly, the desired tertiary alcohol 5 was successfully obtained on a gram scale in 70% yield and with greater than $99 \% e e$, thus further demonstrating the great functional-group compatibility and practicality of this rhodium-catalyzed addition. $\mathrm{S}_{N} 2$ displacement of the chloride in $\mathbf{5}$ with dimethylamine and subsequent palladium-catalyzed dicyanation-lactonization afforded the lactone 6 in 73% overall yield. Reduction of $\mathbf{6}$ using DIBAL- $\mathrm{H} / \mathrm{NaBH}_{4}$ and subsequent ring-closure by treatement of MsCl provided escitalopram in 61% overall yield and greater than $98 \% e e$. Thus, a new, concise, and highly enantioselective synthesis of escitalopram was successfully developed with this methodology.

In summary, we have developed, for the first time, highly efficient rhodium-catalyzed additions of arylboroxines to aryl ketones to access a range of chiral diaryl carbinols in excellent yields and enantioselectivities with a broad substrate scope and great functional-group compatibility. (R, R, R, R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has also enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. Further applications of this methodology for chiral natural products and drug synthesis are currently ongoing and progress will be reported in due course.

Acknowledgements

We are grateful to NSFC-21432007, 21272254, 21572246, the "Thousand Plan" Youth program.

Keywords: asymmetric catalysis • enantioselectivity • ligand design • rhodium • total synthesis

How to cite: Angew. Chem. Int. Ed. 2016, 55, 4527-4531
Angew. Chem. 2016, 128, 4603-4607
[1] For reviews, see: a) Comprehensive Asymmetric Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999; b) L. Pu, H.-B. Yu, Chem. Rev. 2001, 101, 757; c) K. Fagnou, K. M. Lautens, Chem. Rev. 2003, 103, 169; d) S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763; e) C. Garcia, V. S. Martin, Curr. Org. Chem. 2006, 10, 1849; f) O. Riant, J. Hannedouche, Org. Biomol. Chem. 2007, 5, 873; g) P. Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012, 2, 95; h) D. Ameen, T. J. Snape, MedChemComm 2013, 4, 893.
[2] a) S. Dhillon, L. J. Scott, G. L. Plosker, CNS Drugs 2006, 20, 763; b) A. M. Fournier, R. A. Brown, W. Farnaby, H. MiyatakeOndozabal, J. Clayden, Org. Lett. 2010, 12, 2222; c) L. A. Nathan, J. Appl. Ther. 1962, 4, 830; d) T. A. Yap, M. I. Walton, K. M. Grimshaw, R. H. te Poele, P. D. Eve, M. R. Valanie, A. K. de Haven Brandon, V. Martins, A. Zetterlund, S. P. Heaton, K. Heinzmann, P. S. Jones, R. E. Feltell, M. Reule, S. J. Woodhead, T. G. Davies, J. F. Lyons, F. I. Raynaud, S. A. Eccles, P. Workman, N. E. Thompson, M. D. Garrett, Clin. Cancer Res. 2012, 18, 3912; e) M. Chang, T. H. Kim, H.-D. Kim, Tetrahedron: Asymmetry 2008, 19, 1504; f) R. Wallace, A. L. Porte, R. Hodges, J. Chem. Soc. 1963, 1445.
[3] For other methods such as asymmetric additions of various carbon nucleophiles to aromatic ketones, asymmetric dihydroxylation of styrenes, and tertiary boronic acids, see: a) M. Shibasaki, M. Kanai, Chem. Rev. 2008, 108, 2853; b) M. Hatano, K. Ishihara, Synthesis 2008, 1647; c) M. C. Noe, M. A. Letavic, S. L. Snow, Org. React. 2005, 66, 109; d) J. L. Stymiest, V. Bagutski, R. M. French, V. K. Aggarwal, Nature 2008, 456, 778; e) D. Leonori, V. K. Aggarwal, Acc. Chem. Res. 2014, 47, 3174.
[4] For enantioselective organozinc addition to ketones, see: a) D. J. Ramón, M. Yus, Angew. Chem. Int. Ed. 2004, 43, 284 ; Angew. Chem. 2004, 116, 286; b) J. M. Betancort, C. García, P. J. Walsh, Synlett 2004, 749; c) P. I. Dosa, G. C. Fu, J. Am. Chem. Soc. 1998, 120, 445; d) D. J. Ramón, M. Yus, Tetrahedron Lett. 1998, 39, 1239; e) O. Prieto, D. J. Ramón, M. Yus, Tetrahedron: Asymmetry 2003, 14, 1955; f) H. Li, C. García, P. J. Walsh, Proc. Natl. Acad. Sci. USA 2004, 101, 5425; For enantioselective organoaluminum addition to ketones, see: g) C.-A. Chen, K.-H. Wu, H.M. Gau, Angew. Chem. Int. Ed. 2007, 46, 5373; Angew. Chem. 2007, 119, 5469.
[5] For amino- or iminoalcohol-catalyzed asymmetric arylation in combination with an arylboronic acid (or ester) and diethylzinc, see: a) C. Bolm, J. Rudolph, J. Am. Chem. Soc. 2002, 124, 14850; b) J. Rudolph, F. Schmidt, C. Bolm, Adv. Synth. Catal. 2004, 346, 867; c) J.-X. Ji, J. Wu, T. T.-L. Au-Yeung, C.-W. Yip, R. K. Haynes, A. S. C. Chan, J. Org. Chem. 2005, 70, 1093; d) A. L. Braga, D. S. Lüdtke, ; F. Vargas, M. W. Paixão, Chem. Commun. 2005, 2512; F. Vargas, M. W. Paixão, Chem. Commun. 2005, 2512; e) G. Lu, F. Y. Kwong, J.-W. Ruan, Y.-M. Li, A. S. C. Chan, Chem. Eur. J. 2006, 12, 4115; f) N. A. Magnus, P. B. Anzeveno, D. S. Coffey, D. A. Hay, M. E. Laurila, J. M. Schkeryantz, B. W. Shaw, M. A. Staszak, Org. Process Res. Dev. 2007, 11, 560; g) J. Ruan, G. Lu, L. Xu, Y.-M. Li, A. S. C. Chan, Adv. Synth. Catal. 2008, 350, 76.
[6] For rhodium catalysts, see: a) M. Sakai, M. Ueda, N. Miyaura, Angew. Chem. Int. Ed. 1998, 37, 3279; Angew. Chem. 1998, 110, 3475; b) T. Focken, J. Rudolph, C. Bolm, Synthesis 2005, 429; c) K. Suzuki, S. Ishii, K. Kondo, T. Aoyama, Synlett 2006, 648 ; d) K. Suzuki, K. Kondo, T. Aoyama, Synthesis 2006, 1360; e) T. Arao, K. Suzuki, K. Kondo, T. Aoyama, Synthesis 2006, 3809 ; f) H.-F. Duan, J.-H. Xie, W.-J. Shi, Q. Zhang, Q.-L. Zhou, Org. Lett. 2006, 8,1479 ; g) R. B. C. Jagt, P. Y. Toullec, E. P. Schudde, J. G. de Vries, B. L. Feringa, A. J. Minnaard, J. Comb. Chem. 2007, 9, 407; h) S. Morikawa, K. Michigami, H. Amii, Org. Lett. 2010, 12, 2520; i) R. B. C. Jagt, P. Y. Toullec, J. G. de Vries, B. L. Feringa, A. J. Minnaard, Org. Biomol. Chem. 2006, 4, 773; j) T. Nishimura, H. Kumamoto, M. Nagaosa, T. Hayashi, Chem. Commun. 2009, 5713; k) C.-H. Xing, Y.-X. Liao, P. He, Q.-S. Hu, Chem. Commun. 2010, 46, 3010; For ruthenium catalysts, see: 1) Y. Yamamoto, K. Kurihara, N. Miyaura, Angew. Chem. Int. Ed. 2009, 48, 4414; Angew. Chem. 2009, 121, 4478; m) K. Li, N. Hu, R. Luo, W. Yuan, W. Tang, J. Org. Chem. 2013, 78, 6350; For copper catalysts, see: n) D. Tomita, M. Kanai, M. Shibasaki, Chem. Chem. Asian J. 2006, 1, 161; For nickel catalysts, see: o) T. Arao, K. Kondo, T. Aoyama, Tetrahedron Lett. 2007, 48, 4115; p) K. Yamamoto, K. Tsurumi, F. Sakurai, K. Kondo, T. Aoyama, Synthesis 2008, 3585; q) F. Sakurai, K. Kondo, T. Aoyama, Chem. Pharm. Bull. 2009, 57, 511; r) F. Sakurai, K. Kondo, T. Aoyama, Tetrahedron Lett. 2009, 50, 6001.
[7] For additions to α-keto esters, see: a) H.-F. Duan, J.-H. Xie, X.C. Qiao, L.-X. Wang, Q.-L. Zhou, Angew. Chem. Int. Ed. 2008, 47, 4351; Angew. Chem. 2008, 120, 4423; b) Y. Yamamoto, T. Shirai, M. Watanabe, K. Kurihara, N. Miyaura, Molecules 2011, 16, 5020; c) F. Cai, X. Pu, X. Qi, V. Lynch, A. Radha, J. M. Ready, J. Am. Chem. Soc. 2011, 133, 18066; d) T.-S. Zhu, S.-S. Jin, M.-H. Xu, Angew. Chem. Int. Ed. 2012, 51, 780; Angew. Chem. 2012, 124, 804; For additions to isatins, see: e) R. Shintani, M. Inoue, T. Hayashi, Angew. Chem. Int. Ed. 2006, 45, 3353; Angew. Chem. 2006, 118, 3431; f) J. Gui, G. Chen, P. Cao, J. Liao, Tetrahedron: Asymmetry 2012, 23, 554; g) P. Y. Toullec, R. B. C. Jagt, J. G. de Vries, B. L. Feringa, A. J. Minnaard, Org. Lett. 2006, 8, 2715; h) H. Lai, Z. Huang, Q. Wu, Y. Qin, J. Org. Chem. 2009, 74, 283; i) Z. Liu, P. Gu, M. Shi, P. McDowell, G. Li, Org. Lett. 2011, 13, 2314. For additions to trifluoromethyl ketones, see: j) S. L. X. Martina, R. B. C. Jagt, J. G. de Vries, B. L. Feringa, A. J. Minnaard, Chem. Commun. 2006, 4093; k) V. R.

Jumde, S. Facchetti, A. Iuliano, Tetrahedron: Asymmetry 2010, 21,2775 ; 1) R. Luo, K. Li, Y. Hu, W. Tang, Adv. Synth. Catal. 2013, 355, 1297.
[8] a) G. Liu, X. Lu, J. Am. Chem. Soc. 2006, 128, 16504; b) G. Liu, X. Lu, Tetrahedron 2008, 64, 7324; c) D. W. Low, G. Pattison, M. D. Wieczysty, G. H. Churchill, H. W. Lam, Org. Lett. 2012, 14, 2548.
[9] a) J. Bouffard, K. Itami, Org. Lett. 2009, 11, 4410; b) T. Korenaga, A. Ko, K. Uotani, Y. Tanaka, T. Sakai, Angew. Chem. Int. Ed. 2011, 50, 10703; Angew. Chem. 2011, 123, 10891 ; c) Y.-X. Liao, C.-H. Xing, Q.-S. Hu, Org. Lett. 2012, 14, 1544.
[10] a) W. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029; b) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713; c) W. Tang, X. Zhang, Angew. Chem. Int. Ed. 2002, 41, 1612; Angew. Chem. 2002, 114, 1682.
[11] G. Liu, X. Liu, Z. Cai, G. Jiao, G. Xu, W. Tang, Angew. Chem. Int. Ed. 2013, 52, 4235; Angew. Chem. 2013, 125, 4329.
[12] a) W. Tang, B. Qu, A. G. Capacci, S. Rodriguez, X. Wei, N. Haddad, B. Narayanan, S. Ma, N. Grinberg, N. K. Yee, D. Krishnamurthy, C. H. Senanayake, Org. Lett. 2010, 12, 176; b) D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, W. Tang, A. G. Capacci, S. Rodriguez, J. J. Song, H. Lee, N. K. Yee, C. H. Senanayake, J. Am. Chem. Soc. 2010, 132, 7600.
[13] DFT calculations were performed with a Gaussian03 package and the geometries were optimized with UB3LYP and a mixed basis set of 3-21G for all atoms.
[14] For resolution of racemates, see: a) K. P. Boegesoe, J. Perregaard, EP347066A1, 1989; b) K. P. Boegesoe, EP171943A1, 1986; c) G. Cotticelli, R. Salvetti, C. Bertoni, WO2006136521A1, 2006; d) C. R. Elati, N. Kolla, H. Vurimidi, V. T. Mathad, Org. Process Res. Dev. 2007, 11, 289; e) R. M. Pulla, R. T. Sambasiva, C. N. Venkaiah, WO2006025071A1, 2006.
[15] For reported asymmetric syntheses, see: a) M. Albert, H. Sturm, A. Berger, P. Kremminger, WO2007082771A1, 2007; b) B. M. Partridge, S. P. Thomas, V. K. Aggarwal, Tetrahedron 2011, 67, 10082.

Received: January 28, 2016
Revised: February 15, 2016
Published online: March 2, 2016

[^0]: [*] L. Huang, J. Zhu, Prof. Dr. X. Yu, Prof. Dr. W.-P. Deng, Prof. Dr. W. Tang
 Shanghai Key Laboratory of New Drug Design, School of Pharmacy,
 East China University of Science and Technology
 130 Mei Long Rd, Shanghai 200237 (China)
 E-mail: weiping_deng@ecust.edu.cn tangwenjun@sioc.ac.cn
 G. Jiao, Prof. Dr. W. Tang

 State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China)
 Dr. Z. Wang
 Innovation Center China, AstraZeneca Global R\&D (China)
 (-) Supporting information for this article can be found under http://dx. doi.org/10.1002/anie. 201600979.

