Literature Report 4

Biomimetic Total Synthesis of Homodimericin A

Reporter: Huanping Xie Checker: Zhong Yan Date: 2017-11-06

Ma, D.; Liu, Y.; Wang, Z. *Angew. Chem. Int. Ed.* **2017**, *56*, 7886. Huang, J.; Gu, Y.; Guo, K.; Zhu, L.; Lan, Y.; Gong, J.; Yang, Z. *Angew. Chem. Int. Ed.* **2017**, *56*, 7890.

Biography

Zhang Wang

Areas of interest:

- Develop catalytic asymmetric organic reactions using environmentally benign reagents and catalysts for medicinally important agents.
- Total synthesis of natural products with intriguing structures and important biological activities.

Research experience:

- **2014-2017** Assistant Professor, Albany, State University of New York
- **2011-2014** Postdoctor, Princeton University (David W. C. MacMillan)
- **2006-2011** Ph.D., Columbia University (Samuel J. Danishefsky)
- **2005-2006** Research Assistant, Peking University (Xin Sheng Zhao)
- **2001-2005** B.S., Peking University (Jiaxi Xu)

Introduction

Structure of Homodimericin A

Trichoderma harzianum fungus (哈茨木霉真菌)

- Unsaturated hexacyclic polyketide
- Highly sterically demanding cagelike core
- 8 Contiguous stereocenters (3 contiguous quaternary centers)

Total synthesis of Homodimericin A by Wang's group

Retrosynthetic analysis

Ma, D.; Liu, Y.; Wang, Z. Angew. Chem. Int. Ed. 2017, 56, 7886.

Synthesis of resorcinol 8

6

Dimerization cascade to compound 13

Synthesis of Homodimericin A and its C8 epimer

Prins反应最初是指由烯烃在酸催化下对甲醛的缩合反应,后来泛指一系列 历经氧喻离子中间态的烯烃与羰基的加成反应。反应一般在酸性条件和较低温 度下就可以实现。

Carbonyl-ene 反应是指由羰基化合物与有α-H的烯烃经协同反应机理发生 反应。反应一般在加热或Lewis酸催化条件下实现。

Total synthesis of Homodimericin A by Yang's Group

Retrosynthetic analysis

Synthesis of quinol 7 through a double Michael reaction

Cross-coupling of enolate nucleophiles

Kuwajima, I.; Urabe, H. *J. Am. Chem. Soc.* **1982**, *104*, 6831. Su, W.; Raders, S.; Verkade, J. G.; Liao, X.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2006**, *45*, 5852.

Kuwajima–Urabe arylation

$ \begin{array}{c} \text{OTMS} \\ \text{Ph} \\ \text{H} \\ \text{H}$		3 mol % Pd(OAc) ₂ 5.4 mol % P ^t Bu ₃	\int
		additive, toluene 85 °C, 14 h	Ar 3
			$Ar = 4 - {}^{t}BuC_{6}H_{4}$
Entry ^a	Additive (equiv)	1:2	Yield (%) ^b
1		1.2:1	0
2	BuSnF (1.2)	1.2:1	34
3	CsF (1.2)	1.2:1	18
4	BuSnF (1.2), CsF (1.2)	1.2:1	81
5	Me ₄ NF (1.2)	1.2:1	0
6	BuSnF (1.2), CsF (1.2)	1:1.2	65
7	BuSnF (1.4), CsF (1.4)	1.4:1	98
8	BuSnF (0.14), CsF (1.4)	1.4:1	67
^a Reactions were run at 85 °C with 0.5 mmol 2 (0.25 M), ^b Yield of the isolated product.			

Su, W.; Raders, S.; Verkade, J. G.; Liao, X.; Hartwig, J. F. Angew. Chem. Int. Ed. 2006, 45, 5852.

Synthesis of Homodimericin A

Prins反应最初是指由烯烃在酸催化下对甲醛的缩合反应,后来泛指一系列历经氧喻离子中间态的烯烃与羰基的加成反应。反应一般在酸性条件和较低温度下就可以实现。

Carbonyl-ene 反应是指由羰基化合物与有*α*-H的烯烃经协同反应机理发生 反应。反应一般在加热或Lewis酸催化条件下实现。

Free-energy profiles for the formation of 11 and 10

Summary

Wang's work

- > 7 Steps, 1.6% overall yield
- Double Michael reaction
- Diels-Alder reaction
- Prins reaction

Yang's work

- > 8 Steps, 2.9% overall yield
- Double Michael reaction
- Diels-Alder reaction
- Carbonyl-ene reaction

Ma, D.; Liu, Y.; Wang, Z. *Angew. Chem. Int. Ed.* **2017**, *56*, 7886. Huang, J.; Gu, Y.; Guo, K.; Zhu, L.; Lan, Y.; Gong, J.; Yang, Z. *Angew. Chem. Int. Ed.* **2017**, *56*, 7890.

Nature usually creates secondary metabolites in a sophisticated way involving a number of enzymes, leading to enantiopure natural products. However, some natural products exist as a racemate, indicating that postenzymatic reactions of achiral starting materials should be present in the biogenetic process. A well-known example is the endiandric acid family of natural products, where a series of pericyclic reactions occur on an achiral linear polyolefinic substrate to generate different endiandric acids, as proposed by Black et al. Nicolaou et al. successfully utilized a biomimetic approach to synthesize the endiandric acids and validated Black's biosynthetic proposal.

The First Paragraph

Recently, in the study of molecular exchange between bacteria and fungi, Clardy and co-workers isolated a complex hexacyclic natural product, homodimericin A, as a fungal metabolite. The structure of homodimericin A was proposed based on comprehensive NMR experiments with support from computational chemistry. Inspired by the fact that homodimericin A exists as a racemate, Clardy and co-workers proposed that a 1,3,4benzenetriol derivative undergoes a series of reactions involving oxidation, dimerization, oxidation, intramolecular Diels-Alder and Prins cyclization, and eventually generates homodimericin A. The novel structure of homodimericin A and the proposed biosynthetic pathway from a simple precursor attracted our attention. Herein we report the first biomimetic total synthesis of homodimericin A with evidence to support its biosynthetic proposal.

In summary, the first biomimetic total synthesis of hexacyclic natural product (+/-)-homodimericin A was achieved in seven steps involving two cascade transformations. Key steps in the biosynthetic proposal of homodimericin A by Mevers et al. were validated with experimental support. Homodimericin A and other intermediates in this study may serve as markers for investigation of fungal response to oxidative stresses.

Thanks for your attention!