Literature Report 5

Total Synthesis of Ileabethoxazole, Pseudopteroxazole, and *seco*-Pseudopteroxazole

> Reporter: Guang-Shou Feng Checker: Lei Shi Date: 2016-04-12

Li, A. et al. Angew. Chem. Int. Ed. **2016**, 55, 2851.

Shanghai Institute of Organic Chemistry

Contents

2

Total Synthesis of lleabethoxazole by Corey

3 Total Synthesis of Ileabethoxazole and Pseudopteroxazole by Li

4 Summary

Introduction

Ang Li

2000 – 2004	B.S., Peking University , Beijing, China
	Advisor: Prof. Zhen Yang

- 2004 2009 Ph.D., **The Scripps Research Institute**, California, USA Advisor: Prof. K. C. Nicolaou
- 2010 Research fellow, Institute of Chemical and Engineering Advisor: Prof. K. C. Nicolaou
- 2010 present Professor, Shanghai Institute of Organic Chemistry, China

Research Interests:

Total synthesis of structurally and biologically interesting natural products

Introduction

Li, A. et al. Angew. Chem. Int. Ed. 2016, 55, 2851.

Introduction

- Isolated from Pseudopterogorgia elisabethae by Rodriguez's group in 1999
- Displaying promising inhibitory activity against Mycobacterium tuberculosis
- Belongs to a diverse diterpenoid family

Enantiospecific Total Synthesis of Pseudopteroxazole

Corey, E. J. et al. *J. Am. Chem. Soc.* **2003**, *125*, 13486.

Enantiospecific Total Synthesis of Pseudopteroxazole

CH₂Cl₂ as Solvent

Acetic Acid as Solvent

Me

Me

`Me

20

Corey, E. J. et al. *J. Am. Chem. Soc.* **2003**, *125*, 13486. 9

Enantiospecific Total Synthesis of Pseudopteroxazole

Retrosynthesis of lleabethoxazole, Pseudopteroxazole

Li, A. et al. Angew. Chem. Int. Ed. **2016**, 55, 2851.

Seyferth–Gilbert Homologation Reaction

Seyferth–Gilbert Homologation Reaction

Total Synthesis of Pseudopteroxazole

Three modes of MacMillan catalyst

SOMO (Singly Occupied Molecular Orbital) **catalysis** was developed to allow for π -neutral or π -rich nucleophiles to add to the three- π electron radical cation species at the now electrophilic α -position of an aldehyde.

Total Synthesis of seco-Pseudopteroxazole

Summary

- First enantiospecific total synthesis of Pseudopteroxazole.
- Stereocontrolled cyclization to form compound 14 diastereoselectively.

Corey, E. J. et al J. Am. Chem. Soc. 2003, 125, 13486.

- A cascade alkyne carbopalladation/Stille reaction to construct a triene precursor.
- One-pot 6π electrocyclization/aromatization.

Li, A. et al Angew. Chem. Int. Ed. 2016, 55, 2851.

Tuberculosis (TB) has long been a severe threat to human health. In recent years, the rapid increase in multidrug-resistant and extensively drug-resistant TB infections and TB/ HIV co-infection raises the demand for more effective chemotherapeutics. Natural products provide an unparalleled source of lead compounds for *anti*-TB drug lleabethoxazole, pseudopteroxazole, development. and secopseudopteroxazole are benzoxazole alkaloids that were isolated by and co-workers from the Caribbean Rodrquez sea whip *Pseudopterogorgia elisabethae* and display promising inhibitory activity against *Mycobacterium tuberculosis*. From structural and biosynthetic perspectives, these molecules belong to a large and diverse diterpenoid family isolated from the same species, and some of their congeners are shown in Figure 1. Notably, a significant number of the family members possess multisubstituted aromatic cores, which enhances the difficulty of their chemical synthesis.

In summary, we have accomplished the total syntheses of ileabethoxazole, pseudopteroxazole, and seco-pseudopteroxazole (1–3) in a collective manner. The key step was a one-pot 6 π electrocyclization/aromatization sequence, which efficiently constructed the multisubstituted arene scaffold from a geometry-defined hexasubstituted triene. This work provides a versatile synthetic approach to analogues of benzoxazole diterpenoids and may facilitate their biological studies.